cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174467 G.f.: exp( Sum_{n>=1} A174468(n)*x^n/n ) where A174468(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).

This page as a plain text file.
%I A174467 #13 Sep 30 2024 21:16:48
%S A174467 1,1,5,10,31,58,157,299,711,1367,2987,5679,11807,22117,44006,81513,
%T A174467 156885,286413,537058,967367,1773882,3155223,5677183,9976095,17661695,
%U A174467 30682683,53544796,92037152,158575796,269850363,459636546,774851829
%N A174467 G.f.: exp( Sum_{n>=1} A174468(n)*x^n/n ) where A174468(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).
%H A174467 Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, <a href="https://doi.org/10.1007/s44007-024-00134-w">A unified treatment of families of partition functions</a>, La Matematica (2024). Preprint available as <a href="https://arxiv.org/abs/2303.02240">arXiv:2303.02240</a> [math.CO], 2023.
%F A174467 From _Ricardo Gómez Aíza_, Mar 08 2023: (Start)
%F A174467 E.g.f.: Product_{n>=1,m>=1,k>=1} 1 / (1 - x^(n * m * k))^n.
%F A174467 log(a(n) / n!) ~ (3/2) * (Zeta(3) * Pi^4 / 18)^(1/3) * n^(2/3). (End)
%o A174467 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,d*sigma(m/d)*sigma(d)))+x*O(x^n)),n)}
%Y A174467 Cf. A174465, A000203 (sigma).
%K A174467 nonn
%O A174467 0,3
%A A174467 _Paul D. Hanna_, Apr 04 2010