This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174497 #20 Apr 10 2024 04:45:30 %S A174497 0,0,1,0,1,1,7,7,1,3,0,1,3,5,1,13,13,1,3,1,1,0,1,3,5,1,5,1,19,19,1,3, %T A174497 7,9,1,3,23,23,23,1,5,7,11,3,5,0,1,3,5,9,11,1,5,5,1,31,31,31,1,5,7,11, %U A174497 13,3,7,1,37,37,1,3,7,9,13,15,1,1,7,1,0,1,3,5,9,11,15,17,1,13,5,5,1 %N A174497 Triangle read by rows: T(n,k) = prime(n) mod (prime(n+1) - prime(k)) for 0 < k < n+1. %H A174497 Michel Marcus, <a href="/A174497/b174497.txt">Rows n=1..100 of triangle, flattened</a> %e A174497 Triangle begins as: %e A174497 0; %e A174497 0, 1; %e A174497 0, 1, 1; %e A174497 7, 7, 1, 3; %e A174497 0, 1, 3, 5, 1; %e A174497 13, 13, 1, 3, 1, 1; %e A174497 0, 0, 1, 0, 1, 1, 7; %e A174497 7, 1, 3, 0, 1, 3, 5, 1; %e A174497 13, 13, 1, 3, 1, 1, 0, 1, 3; %t A174497 Table[Mod[Prime[n], Prime[n+1]-Prime[k]], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 10 2024 *) %o A174497 (Sage) A174497 = flatten([[nth_prime(n) % (nth_prime(n+1)-nth_prime(k)) for k in range(1,n+1)] for n in range(1, 20)]) # _D. S. McNeil_, Nov 30 2010 %o A174497 (PARI) T(n, k) = prime(n) % (prime(n+1)-prime(k)); %o A174497 tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Aug 08 2017 %o A174497 (Magma) %o A174497 [NthPrime(n) mod (NthPrime(n+1) - NthPrime(k)): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 10 2024 %Y A174497 Cf. A000040, A086800, A177226. %K A174497 nonn,tabl,easy %O A174497 1,7 %A A174497 _Juri-Stepan Gerasimov_, Nov 28 2010