This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174511 #26 Jan 14 2024 06:56:31 %S A174511 1,2,4,9,16,29,55,137,241,453,894,2065,3845 %N A174511 The number of isomorphism classes of subgroups of the symmetric group S_n. %C A174511 Two subgroups are considered to be isomorphic here if they are isomorphic as abstract groups, not as permutation groups. - _N. J. A. Sloane_, Nov 28 2010 %H A174511 A. Distler and T. Kelsey, <a href="http://arxiv.org/abs/1301.6023">The semigroups of order 9 and their automorphism groups</a>, arXiv preprint arXiv:1301.6023 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 19 2013 %H A174511 J. Schmidt, <a href="http://math.stackexchange.com/questions/76176/enumerating-all-subgroups-of-the-symmetric-group">Enumerating all subgroups of the symmetric group.</a> %e A174511 a(3) = 4 since S_3 contains up to isomorphism exactly one subgroup of each of the orders 1,2,3,6. %o A174511 (GAP) %o A174511 a:=[]; %o A174511 for n in [1,2,3,4,5,6,7,8,9,10] do %o A174511 G:=SymmetricGroup(n); %o A174511 R:=ConjugacyClassesSubgroups(G); %o A174511 RR:=ListX(R,Representative); %o A174511 T:=[RR[1]]; %o A174511 for g in RR do %o A174511 flag:=false; %o A174511 for h in T do %o A174511 if IsomorphismGroups(g,h)<>fail then %o A174511 flag:=true; %o A174511 break; %o A174511 fi; %o A174511 od; %o A174511 if flag=false then Add(T,g); fi; %o A174511 od; %o A174511 Add(a,Size(T)); %o A174511 od; %o A174511 Print(a,"\n"); %Y A174511 Cf. A000638, A005432. %K A174511 nonn,more %O A174511 1,2 %A A174511 _W. Edwin Clark_, Nov 28 2010 %E A174511 a(11) and a(12) from _Stephen A. Silver_, Feb 24 2013 %E A174511 a(13) (as calculated by Jack Schmidt) from _L. Edson Jeffery_, May 26 2013