This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174525 #20 Dec 17 2017 08:02:57 %S A174525 9,12,17,19,24,25,28,33,40,49,51,52,57,60,64,67,72,73,79,81,84,88,89, %T A174525 96,97,99,103,105,108,112,115,116,121,124,129,134,136,144,145,148,156, %U A174525 161,163,168,169,172,177,180,184,192,193,199 %N A174525 Bases N in which ab and ba are different squares, for some a and b. %C A174525 From _Robert Israel_, Mar 14 2016: (Start) %C A174525 Leading 0's are not allowed. %C A174525 Conjecture: all odd squares (A016754) except 1 are terms of the sequence. (End) %C A174525 N=(2n+1)^2, a=n^2, b=4n^2+2n+1 shows that (2n+1)^2 is a term, so this sequence is infinite. - _Michael R Peake_, Mar 21 2017 %H A174525 Robert Israel, <a href="/A174525/b174525.txt">Table of n, a(n) for n = 1..10000</a> %e A174525 17_9 and 71_9 are squares. 14_12 and 41_12 are squares. %p A174525 filter:= proc(n) local x,a,b,R; %p A174525 for x from ceil(sqrt(n)) to n-1 do %p A174525 a:= x^2 mod n; %p A174525 if a=0 then next fi; %p A174525 b:= (x^2-a)/n; %p A174525 if assigned(R[b,a]) then return true fi; %p A174525 R[a,b]:= 1; %p A174525 od; %p A174525 false %p A174525 end proc: %p A174525 select(filter, [$1..1000]); # _Robert Israel_, Mar 14 2016 %o A174525 (MATLAB) %o A174525 Match = zeros(1,100); %o A174525 for N=2:200, Tens=zeros(1,N-1);Units=zeros(1,N-1); for a=N-1:-1:sqrt(N),c=a^2;Tens(a)=floor(c/N);Units(a)=rem(c,N);end; for a=N-1:-1:sqrt(N),h=find((Units==Tens(a))&([1:N-1]~=a)); if length(h),Match=any(Units(a)==Tens(h)); if Match,Sol(N)=Sol(N)+1;end;end;end;end; %o A174525 find(Match > 0) %Y A174525 Cf. A016754. %K A174525 base,easy,nonn %O A174525 1,1 %A A174525 _Michael R Peake_, Mar 21 2010 %E A174525 MATLAB program corrected by _Robert Israel_, Mar 14 2016