This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174558 #28 Aug 31 2024 15:01:20 %S A174558 2304,419933,28432288,1134127305,32580145116,749160010737, %T A174558 14677177838054,254977173389319,4035559337688370,59315924213143597, %U A174558 821112680030028632,10819171744710664383,136800806311499633208,1670597119210336446533,19804685547188544317522,228865023358344707514899,2586924156960003793687130,28681715460054576813151389,312656761422008821513384848,3357651442822195404605813501 %N A174558 Number of ways to place 8n nonattacking kings on a 16 x 2n chessboard. %H A174558 Vaclav Kotesovec, <a href="/A174558/b174558.txt">Table of n, a(n) for n = 1..1000</a> %H A174558 Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013 %H A174558 Vaclav Kotesovec, <a href="/A174558/a174558.txt">G.f.</a> %H A174558 <a href="/index/Rec#order_307">Index entries for linear recurrences with constant coefficients</a>, order 307. %F A174558 Asymptotic formula for number of ways to place m x n nonattacking kings on a 2m x 2n chessboard (this case is m=8): f(m,n) ~ k(m)*n*(m+1)^n %F A174558 First values of k(m): %F A174558 k(1)=1, %F A174558 k(2)=17, %F A174558 k(3)=231, %F A174558 k(4)=3051.17509, %F A174558 k(5)=40881.99638, %F A174558 k(6)=563050.92363, %F A174558 k(7)=8008508.28858, %F A174558 k(8)=117833087.45133 %F A174558 k(9)=1794306724.77472 %F A174558 k(10)=28276454469.76459 %F A174558 k(11)=461049875818.05305 %F A174558 k(12)=7775513990776.97046 %F A174558 k(13)=135589372611110.17367 %F A174558 k(14)=2443990803097108.58764 %F A174558 k(15)=45522076785406201.22572 %F A174558 k(16)=875939597341977670.66777 %F A174558 k(17)=17407856624734801679.11613 %F A174558 k(18)=357216046100723515478.42809 %F A174558 k(19)=7567101689641721175327.80272 %Y A174558 Column k=8 of A350819. %Y A174558 Cf. A174155, A174154, A173782, A173783, A061594, A061593, A018807. %K A174558 nonn %O A174558 1,1 %A A174558 _Vaclav Kotesovec_, Nov 29 2010