cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174583 a(k) is the least n such that the concatenation (n - k)"n is a prime number, for k >= 0.

Original entry on oeis.org

1, 3, 3, 7, 7, 17, 7, 9, 9, 11, 13, 17, 13, 19, 17, 19, 21, 21, 23, 27, 27, 23, 43, 33, 41, 27, 27, 29, 31, 33, 31, 33, 39, 47, 37, 39, 37, 39, 39, 41, 51, 47, 47, 61, 47, 49, 49, 53, 49, 51, 51, 59, 57, 57, 61, 57, 57, 61, 63, 63, 71, 63, 63, 67, 67, 77, 67, 69, 77, 71, 73, 77
Offset: 0

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 23 2010

Keywords

Comments

See comments and references for A174414.
10^d*(n - k) + n has to be prime for the least d-digit n > k (k >= 0).
For (n - k)"n to be a prime, n must end in the digit 1, 3, 7, or 9.
Conjecture: a(k) = a(k+1) for an infinite number of k's.
As n > k, the number of a(k) is finite, and can be easily bounded from above.
1, 11, ... appear only once in the sequence; 3, 9, 13, 19, 21, 23, ... appear twice; 7, 17, ... three times; and so on.
Does each n that ends in the digit 1, 3, 7, or 9 appear in this sequence?
Note this interesting observation that first occurs for k = 84: 9291013 = prime(620602) = (1013 - 84)"1013, a(84) = 1013. A second example is: 9381037 = prime(626219) = (1037 - 99)"1037.
Let k be a multiple of 7, 11, or 13, then no 3-digit n exists such that (n - k)"n is prime. Proof: 10^3*(n - k) + n = n * (10^3+1) - k * 10^3 = 7 * 11 * 13 * n - k * 10^3 is not prime, as k is a multiple of 7, 11, or 13.
Similar for k-digit n with given divisors and k > 3: 10^4 + 1 = 73 * 137, 10^5 + 1 = 11 * 9091.

Examples

			11 = prime(5) = (1 - 0)"1, thus a(0) = 1.
23 = prime(9) = (3 - 1)"3, thus a(1) = 3.
13 = prime(6) = (3 - 2)"3, thus a(2) = 3.
139 = prime(34) = (39 - 38)"39, thus a(38) = 39.
9109 = prime(1130) = (109 - 100)"109, thus a(100) = 109.
		

Crossrefs

Programs

  • Maple
    mycat := (k, n) -> parse(cat(convert(n - k, string), convert(n, string))):
    sol := (k, n) -> isprime(mycat(k, n)):
    a := proc(k) local n; for n from k + 1 while not sol(k, n) do od; n end:
    seq(a(k), k = 0..71);  # Peter Luschny, Sep 20 2024

Extensions

Edited, offset set to 0 and a(71) corrected by Peter Luschny, Sep 20 2024