A174600 T(n,k) = 1 if the sum of +-k..+-n with arbitrary signs never equals zero, = 0 otherwise (lower triangle).
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
Offset: 1
Examples
Triangle begins 1; 1, 1; 0, 1, 1; 0, 1, 1, 1; 1, 0, 1, 1, 1; 1, 0, 0, 1, 1, 1; 0, 1, 1, 0, 1, 1, 1; 0, 1, 1, 0, 0, 1, 1, 1; 1, 0, 0, 1, 1, 0, 1, 1, 1; 1, 0, 0, 1, 1, 1, 0, 1, 1, 1; ...
Links
- R. H. Hardin, Table of n, a(n) for n=1..4950
Crossrefs
Related to A063865.
Programs
-
AWK
{ for(n=1; n<10; n++) for(k=1; k<=n; k++) print ++i, T(n,k); } function T(n,k) { if ( int((n+1)/2)%2 != int(k/2)%2 ) return 1; else if ( (n-k)%2 == 0 ) { if ( k > ((n-k)/2)^2 ) return 1; else return 0; } else return 0; }
-
Mathematica
t[n_, k_] := If[Mod[Floor[(n+1)/2], 2] != Mod[Floor[k/2], 2], 1, If[Mod[n-k, 2] == 0, If[k > ((n-k)/2)^2, 1, 0], 0]]; Flatten[Table[t[n, k], {n, 1, 15}, {k, 1, n}]][[;; 108]] (* Jean-François Alcover, Jul 11 2011, after awk program *)
-
PARI
T(n,k)= { if ( ((n+1)\2)%2 != (k\2)%2, return(1); , /* else */ if ( (n-k)%2 == 0, if ( k > ((n-k)/2)^2, return(1), return(0) ); , /* else */ return(0); ); ); } { for(n=1, 10, /* show triangle */ for(k=1,n, print1(T(n,k),", "); ); print(); ); }