This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174631 #11 Jun 02 2025 02:44:27 %S A174631 0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,4,4,5,5,6,6,7,7,8,8,9, %T A174631 10,11,11,12,13,14,15,17,18,19,21,22,24,26,28,30,33,35,38,41,44,47,51, %U A174631 54,59,63,68,73,79,85,91,98,105,113,122,131,141,152,163,176,189,203,219,235,253,272,293,315,339,364,392,421,453,487,524,564,607,652,702,755,812,873,939,1010,1086,1168,1256 %N A174631 a(n) = Floor[(alpha^n-beta^n)(alpha-beta)], with alpha = (1 + Sqrt(a0))/2; beta = (1 - Sqrt(a0))/2; a0 = real minimal Pisot root of x^3-x-1=0(1.324717957244746). %C A174631 Limiting ratio is:1.0754819626288792. %C A174631 The integer 5 in the Fibonacci Binet formula is replaced by the minimal Pisot real root as a beta integer to design a very low ratio sequence. %F A174631 a0=1.324717957244746; %F A174631 alpha=1.0754819626288792; %F A174631 beta=-0.07548196262887907; %F A174631 a(n)=Floor[(alpha^n-beta^n)/(alpha-beta)] %t A174631 a0 = x /. NSolve[x^3 - x - 1 == 0, x][[3]] %t A174631 a = (1 + Sqrt[a0])/2; b = (1 - Sqrt[a0])/2; %t A174631 f[n_] := Floor[FullSimplify[(a^n - b^n)/(a - b)]] %t A174631 Table[f[n], {n, 0, 100}] %Y A174631 Cf. A000931,A174576 %K A174631 nonn %O A174631 0,13 %A A174631 _Roger L. Bagula_, Nov 29 2010