This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174637 #17 Oct 29 2024 20:31:48 %S A174637 0,0,0,18,2400,325800,52496640,10304300160,2458401684480, %T A174637 705918026419200,241147866161664000,96890287539173990400, %U A174637 45304089884519168102400,24415719893124157985587200,15035096121857624246353920000,10496828397482345253454479360000,8250414679239607850470753370112000 %N A174637 Number of n X n (0,1) matrices with two 1's in each row the permanent of which equals to 4. %C A174637 If a (0,1) matrix with two 1's in each row has positive permanent, then it equals to a power of 2. %D A174637 V. S. Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian). %H A174637 Max Alekseyev, <a href="/A174637/b174637.txt">Table of n, a(n) for n = 1..100</a> %F A174637 a(n) = n!/4 * Sum_{l=0..n-4} binomial(n-1,l) * n^l * A000276(n-l). - _Max Alekseyev_, Oct 21 2024 %F A174637 G.f. for 4*a(n)/n!/(n-1)!: (W(-x)-ln(1+W(-x)))*(W(-x)/(1+W(-x)))^2, where W() is Lambert W-function. - _Max Alekseyev_, Oct 21 2024 %o A174637 (PARI) a174637(n) = n!*(n-1)!/4 * sum(l=0,n-4, n^l/l! * sum(i=2, n-l-2, 1/i)); \\ _Max Alekseyev_, Oct 21 2024 %Y A174637 Cf. A000276, A001866, A174638, A174586, A377246. %K A174637 nonn %O A174637 1,4 %A A174637 _Vladimir Shevelev_, Mar 25 2010 %E A174637 Incorrect formula moved to A377246 and terms a(15) onward added by _Max Alekseyev_, Oct 21 2024