cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174688 All different products of not necessarily distinct terms of A001317.

This page as a plain text file.
%I A174688 #28 Nov 21 2020 06:59:00
%S A174688 1,3,5,9,15,17,25,27,45,51,75,81,85,125,135,153,225,243,255,257,289,
%T A174688 375,405,425,459,625,675,729,765,771,867,1125,1215,1275,1285,1377,
%U A174688 1445,1875,2025,2125,2187,2295,2313,2601,3125,3375,3645,3825,3855,4131,4335,4369
%N A174688 All different products of not necessarily distinct terms of A001317.
%C A174688 Sequence differs from A143512 beginning with a(970).
%H A174688 Amiram Eldar, <a href="/A174688/b174688.txt">Table of n, a(n) for n = 1..10000</a>
%F A174688 Sum_{n>=1} 1/a(n) = 2.
%F A174688 Let m_a(n) = (-1)^A010060(n), if n is squarefree, and 0, otherwise (a-analog of Möbius function). Then Sum_{n>=1} m_a(n)/a(n) = 1/2.
%F A174688 A generalization: Sum_{n>=1} 1/(a(n))^s = Product_{Fermat numbers F} (1-F^(-s))^(-1), where s>0 (an analog of Euler identity for primes, where, for real s, s>1).
%e A174688 9 = 3^2 is a term since 3 is in A001317.
%t A174688 f[n_] := FromDigits[Table[Mod[Binomial[n, k], 2], {k, 0, n}], 2]; n = 13; v = Array[f, n, 0]; vmax = v[[-1]]; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; s (* _Amiram Eldar_, Sep 27 2020 *)
%Y A174688 Cf. A001317, A000215, A143512.
%K A174688 nonn
%O A174688 1,2
%A A174688 _Vladimir Shevelev_, Dec 01 2010
%E A174688 Offset corrected and more terms added by _Amiram Eldar_, Sep 27 2020