cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174690 Triangle T(n, k) = n!*binomial(n, k) - n! + 1, read by rows.

This page as a plain text file.
%I A174690 #8 Feb 10 2021 01:43:18
%S A174690 1,1,1,1,3,1,1,13,13,1,1,73,121,73,1,1,481,1081,1081,481,1,1,3601,
%T A174690 10081,13681,10081,3601,1,1,30241,100801,171361,171361,100801,30241,1,
%U A174690 1,282241,1088641,2217601,2782081,2217601,1088641,282241,1,1,2903041,12700801,30119041,45360001,45360001,30119041,12700801,2903041,1
%N A174690 Triangle T(n, k) = n!*binomial(n, k) - n! + 1, read by rows.
%H A174690 G. C. Greubel, <a href="/A174690/b174690.txt">Rows n = 0..100 of the triangle, flattened</a>
%F A174690 T(n, k) = n!*binomial(n, k) - n! + 1.
%F A174690 From _G. C. Greubel_, Feb 09 2021: (Start)
%F A174690 T(n, k) = A196347(n, k) - n! + 1 = (-1)^k * A021012(n, k) - n! + 1.
%F A174690 Sum_{k=0..n} T(n, k) = 2^n * n! - (n+1)! + (n+1) = A000165(n) - (n+1)! + (n+1). (End)
%e A174690 Triangle begins as:
%e A174690   1;
%e A174690   1,      1;
%e A174690   1,      3,       1;
%e A174690   1,     13,      13,       1;
%e A174690   1,     73,     121,      73,       1;
%e A174690   1,    481,    1081,    1081,     481,       1;
%e A174690   1,   3601,   10081,   13681,   10081,    3601,       1;
%e A174690   1,  30241,  100801,  171361,  171361,  100801,   30241,      1;
%e A174690   1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1;
%t A174690 T[n_, k_]:= n!*Binomial[n, k] - n! + 1;
%t A174690 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
%o A174690 (Sage) flatten([[factorial(n)*(binomial(n,k) -1) + 1 for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 09 2021
%o A174690 (Magma) [Factorial(n)*(Binomial(n,k) -1) + 1: k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 09 2021
%Y A174690 Cf. A000165, A021012, A196347.
%K A174690 nonn,tabl,easy
%O A174690 0,5
%A A174690 _Roger L. Bagula_, Mar 27 2010
%E A174690 Edited by _G. C. Greubel_, Feb 09 2021