A174722 Slowest increasing sequence of odd primes such that the partial sums of the sequence from the second on are perfect powers.
3, 5, 17, 103, 233, 1367, 1753, 2351, 7393, 19543, 20593, 46639, 54449, 284527, 344249, 407791, 512009, 812431, 844433, 1214407, 1316033, 2109671, 2233601, 11251351, 11267777, 13903271, 14449489, 16203287, 16451713, 18219679, 18367721, 18529111
Offset: 1
Keywords
Examples
3+5=8, 3+5+17=25, 3+5+17+103=128 are perfect powers, i.e., in A007504.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..71
Programs
-
Mathematica
fQ[n_] := GCD @@ Last /@ FactorInteger@n > 1; p = sp = 3; lst = {3}; While[p < 10^9, If[ fQ[sp + p], AppendTo[lst, p]; Print@p; sp = sp + p]; p = NextPrime@p]; lst
Extensions
Edited and extended by R. J. Mathar, Mar 31 2010
Edited, corrected and extended by Robert G. Wilson v, Apr 20 2010