A174726 a(n) = (A002033(n-1) - A008683(n))/2.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 2, 4, 1, 7, 1, 8, 1, 1, 1, 13, 1, 1, 1, 10, 1, 7, 1, 4, 4, 1, 1, 24, 1, 4, 1, 4, 1, 10, 1, 10, 1, 1, 1, 22, 1, 1, 4, 16, 1, 7, 1, 4, 1, 7, 1, 38, 1, 1, 4, 4, 1
Offset: 1
Keywords
Links
- Mats Granvik, Table of n, a(n) for n = 1..10000
Crossrefs
The even version is A174725.
A251683 counts ordered factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A332304 counts strict compositions of odd length.
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; Table[Length[Select[ordfacs[n],OddQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)
Comments