A174793 Triangle read by rows: R(n,k) = n mod 2^Omega(k), where Omega( ) is number of prime divisors counted with multiplicity and 1 <= k <= n.
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 2, 0, 1, 1, 3, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 0, 0, 0, 2, 0, 2, 0, 6, 2, 2, 0, 6, 0, 2
Offset: 1
Examples
Triangle begins 0; 0, 0; 0, 1, 1; 0, 0, 0, 0; 0, 1, 1, 1, 1; 0, 0, 0, 2, 0, 2;
Programs
-
Mathematica
Omega[n_] := If[n<2, 0, Plus@@Transpose[FactorInteger[n]][[2]]]; Flatten[Table[Mod[n, 2^Omega[k]], {n, 15}, {k, n}]]