cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174804 a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).

This page as a plain text file.
%I A174804 #17 Feb 02 2023 04:52:07
%S A174804 0,1,4,6,16,30,36,42,48,81,120,132,144,156,168,180,256,340,360,380,
%T A174804 400,420,440,460,480,625,780,810,840,870,900,930,960,990,1020,1050,
%U A174804 1296,1554,1596,1638,1680,1722,1764,1806,1848,1890,1932,1974,2016,2401,2800
%N A174804 a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).
%C A174804 As a(n^2) = n^4, A000583 is a subsequence. - _Bernard Schott_, Feb 01 2023
%F A174804 a(n) = n*A000196(n)*A003059(n). - _Michel Marcus_, Feb 14 2018
%t A174804 f[n_]:=n*Floor[Sqrt[n]]*Ceiling[Sqrt[n]];Table[f[n],{n,0,5!}]
%o A174804 (PARI) a(n) = n*sqrtint(n)*ceil(sqrt(n)); \\ _Michel Marcus_, Feb 14 2018
%o A174804 (Python)
%o A174804 from math import isqrt
%o A174804 def A174804(n): return n*(n if (k:=(m:=isqrt(n))**2)==n else k+m) # _Chai Wah Wu_, Jul 29 2022
%Y A174804 Cf. A000196, A000583, A003059, A038760, A174803.
%K A174804 nonn
%O A174804 0,3
%A A174804 _Vladimir Joseph Stephan Orlovsky_, Mar 29 2010