cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174808 A transform of the large Schroeder numbers A006318.

This page as a plain text file.
%I A174808 #17 Sep 08 2022 08:45:51
%S A174808 1,2,8,34,162,820,4338,23694,132612,756594,4384022,25729336,152627730,
%T A174808 913674362,5512542128,33486653154,204639278346,1257199799116,
%U A174808 7760098104882,48102326710998,299309479778956,1868853597670754
%N A174808 A transform of the large Schroeder numbers A006318.
%C A174808 Hankel transform is A174809.
%H A174808 G. C. Greubel, <a href="/A174808/b174808.txt">Table of n, a(n) for n = 0..1000</a>
%F A174808 G.f.: (1-x-x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x)).
%F A174808 G.f.: 1/(1-2x(1+x)/(1-x(1+x)/(1-2x(1+x)/(1-x(1+x)/(1-...))))) (continued fraction).
%F A174808 a(n) = Sum_{k=0..n} C(k,n-k)*A006318(k).
%F A174808 G.f.: 1 / (1 - (x + x^2)*(1 + 1 / (1 - (x + x^2)*(1 + 1 / ...)))). - _Michael Somos_, Mar 30 2014
%F A174808 Conjecture: (n+1)*a(n) +(-5*n+4)*a(n-1) +(-11*n+13)*a(n-2) +3*(-n+1)*a(n-3) +3*(n-4)*a(n-4) +(n-5)*a(n-5)=0. - _R. J. Mathar_, Feb 10 2015
%e A174808 G.f. = 1 + 2*x + 8*x^2 + 34*x^3 + 162*x^4 + 820*x^5 + 4338*x^6 + ...
%p A174808 A174808 := proc(n)
%p A174808     add(binomial(k,n-k)*A006318(k),k=0..n) ;
%p A174808 end proc: # _R. J. Mathar_, Feb 10 2015
%t A174808 CoefficientList[Series[(1-x-x^2 -Sqrt[1-6*x-5*x^2+2*x^3+x^4])/(2*x*(1 + x)), {x, 0, 30}], x] (* _G. C. Greubel_, Sep 22 2018 *)
%o A174808 (PARI) x='x+O('x^30); Vec((1-x-x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x))) \\ _G. C. Greubel_, Sep 22 2018
%o A174808 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2-Sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x)))); // _G. C. Greubel_, Sep 22 2018
%Y A174808 Cf. A174809.
%K A174808 easy,nonn
%O A174808 0,2
%A A174808 _Paul Barry_, Mar 29 2010