cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174817 Near primes to Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131.

This page as a plain text file.
%I A174817 #31 Oct 12 2024 21:31:23
%S A174817 808017424794512875886459904961710757005754367999999957,
%T A174817 808017424794512875886459904961710757005754367999999947,
%U A174817 808017424794512875886459904961710757005754368000000083,808017424794512875886459904961710757005754367999999803,808017424794512875886459904961710757005754368000000283
%N A174817 Near primes to Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131.
%C A174817 Sorted by increasing distance to Mnr = abs(A174818(n)).
%H A174817 Reinhard Zumkeller, <a href="/A174817/b174817.txt">Table of n, a(n) for n = 1..146</a>
%H A174817 Dario A. Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a>
%H A174817 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MonsterGroup.html">Sporadic Group</a>
%F A174817 a(n) = Mnr + A174818(n).
%e A174817 a(1) = Mnr - 43 = 808017424794512875886459904961710757005754367999999957 is the nearest prime to Mnr;
%e A174817 a(3) = Mnr + 83 = 808017424794512875886459904961710757005754368000000083 is the smallest prime greater than Mnr; remarkably, (a(143),a(141)) = (Mnr-9511,Mnr-9509) is a twin prime pair.
%t A174817 With[{mnr=808017424794512875886459904961710757005754368000000000},SortBy[ {#,Abs[ #-mnr]}&/@Table[NextPrime[mnr,n],{n,{-4,-3,-2,-1,1,2,3,4}}],Last]][[All,1]] (* _Harvey P. Dale_, Nov 14 2021 *)
%Y A174817 Cf. A001228, A003131, A174818.
%K A174817 nonn
%O A174817 1,1
%A A174817 _Reinhard Zumkeller_, Apr 02 2010
%E A174817 a(5) aligned with b-file by _Georg Fischer_, Jul 11 2022