A174856 Square array read by antidiagonals up. Redheffer type matrix. T(1,1)=1 and T(n,1) = A049240.
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
The array begins: 1,1,1,1,1,1,1,1,1,1 1,1,0,0,0,0,0,0,0,0 1,0,1,0,0,0,0,0,0,0 0,1,0,1,0,0,0,0,0,0 1,0,0,0,1,0,0,0,0,0 1,1,1,0,0,1,0,0,0,0 1,0,0,0,0,0,1,0,0,0 1,1,0,1,0,0,0,1,0,0 0,0,1,0,0,0,0,0,1,0 1,1,0,0,1,0,0,0,0,1
Programs
-
Mathematica
t[1, 1] = 1; t[n_, 1] := Boole[!IntegerQ[Sqrt[n]]]; t[n_, k_] := Boole[n == 1 || Mod[n, k] == 0]; Table[t[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)
Comments