This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174882 #31 Sep 08 2022 08:45:51 %S A174882 1,1,-2,-8,-16,-16,32,128,256,256,-512,-2048,-4096,-4096,8192,32768, %T A174882 65536,65536,-131072,-524288,-1048576,-1048576,2097152,8388608, %U A174882 16777216,16777216,-33554432,-134217728,-268435456,-268435456 %N A174882 A (3/2,-1) Somos-4 sequence. %C A174882 Hankel transform of A051286. a(n+2) = -(-1)^floor(n/4) * 2^A098181(n). %H A174882 G. C. Greubel, <a href="/A174882/b174882.txt">Table of n, a(n) for n = 0..1000</a> %H A174882 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,-16). %F A174882 a(n) = ((3/2)*a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n>3. %F A174882 a(-n) = a(n-1) / 2^(2*n - 1) for all n in Z. - _Michael Somos_, Jan 06 2011 %F A174882 0 = a(n)*(+2*a(n+4)) + a(n+1)*(-3*a(n+3)) + a(n+2)*(+2*a(n+2)) for all n in Z. - _Michael Somos_, Sep 18 2014 %F A174882 a(n+4) = -16 * a(n) for all n in Z. - _Michael Somos_, Sep 02 2015 %F A174882 G.f.: -(2*x-1)*(4*x^2+3*x+1)/(1+16*x^4) . - _R. J. Mathar_, Aug 18 2017 %e A174882 G.f. = 1 + x - 2*x^2 - 8*x^3 - 16*x^4 - 16*x^5 + 32*x^6 + 128*x^7 + ... %t A174882 a[ n_] := (-1)^Quotient[n + 2, 4] 2^(n - Mod[ Quotient[n + 1, 2], 2]); (* _Michael Somos_, Sep 18 2014 *) %t A174882 CoefficientList[Series[(1-2*x)*(4*x^2+3*x+1)/(1+16*x^4), {x,0,50}], x] (* _G. C. Greubel_, Feb 21 2018 *) %o A174882 (PARI) {a(n) = (-1)^((n+2) \ 4) * 2^(n - ((n+1) \ 2 % 2))}; /* _Michael Somos_, Jan 06 2011 */ %o A174882 (PARI) x='x+O('x^30); Vec((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4)) \\ _G. C. Greubel_, Feb 21 2018 %o A174882 (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4))) // _G. C. Greubel_, Feb 21 2018 %Y A174882 Cf. A051286, A098181. %K A174882 easy,sign %O A174882 0,3 %A A174882 _Paul Barry_, Mar 31 2010