cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174885 Prime hypotenuses c with concatenation p = c//a//b a prime number.

This page as a plain text file.
%I A174885 #3 Apr 17 2016 08:56:55
%S A174885 29,409,461,661,929,1249,1289,1381,1801,1901,2081,2609,2621,2749,3041,
%T A174885 3301,3881,5309,5701,6421,6481,6521,6529,7349,7489,7789,8641,8849,
%U A174885 9349,9629,9649,9689,9829,10321,10709,10861,12841,14321,14561,15061,16661
%N A174885 Prime hypotenuses c with concatenation p = c//a//b a prime number.
%C A174885 See comments in A174825
%C A174885 c is the prime hypotenuse c, i. e. c of a primitive Pythagorean triple: a^2 + b^2 = c^2
%D A174885 W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, New York: Dover, 1987
%D A174885 L. E. Dickson: "Rational Right Triangles", ch. 4 in History of the Theory of numbers, vol. II, Dover Publications 2005
%D A174885 W. Sierpinski: Pythagorean Triangles, Mineola, NY, Dover Publications, Inc, 2003
%e A174885 p = c//a//b: 292021, 409120391, 461380261, 661300589, 929920129, 1249960799, 12895601161,
%e A174885 13811020931, 18011680649, 19011820549, 208116401281, 260918801809, 262111002379,
%e A174885 27492580949, 30414403009, 330129401501, 388123603081, 53095300309, 570122205251
%e A174885 29^2=20^2+21^2, 409^2=120^2+391^2, 461^2=380^2+261^2,
%e A174885 661^2=300^2+589^2, 929^2=920^2+129^2, 1249^2=960^2+799^2,
%e A174885 1289^2=560^2+1161^2,1381^2=1020^2+931^2, 1801^2=1680^2+649^2,
%e A174885 1901^2=1820^2+549^2, 2081^2=1640^2+1281^2, 2609^2=1880^2+1809^2,
%e A174885 2621^2=1100^2+2379^2, 2749^2=2580^2+949^2, 3041^2=440^2+3009^2,
%e A174885 3301^2=2940^2+1501^2, 3881^2=2360^2+3081^2, 5309^2=5300^2+309^2,
%e A174885 5701^2=2220^2+5251^2
%Y A174885 A008846, A020882, A048161, A067756, A138044, A174825
%K A174885 base,nonn,uned
%O A174885 1,1
%A A174885 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 01 2010
%E A174885 More terms from _Zak Seidov_, Apr 04 2010