This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174895 #10 Sep 22 2015 11:20:47 %S A174895 1,2,3,5,7,8,11,13,17,19,23,27,29,31,36,37,41,43,47,53,59,61,64,67,71, %T A174895 73,79,83,89,97,100,101,103,107,109,113,125,127,131,137,139,149,151, %U A174895 157,163,167,173,179,181,191,193,196,197,199,211,223,225,227,229,233,239 %N A174895 a(n) = possible values of A007955(m) in increasing order, where A007955(m) = product of divisors of m. %C A174895 a(n) = all values of A007955(m) in increasing order; all terms of sequence A007955 occur only once. Complement of A174896(n). A174897(a(n)) = 1, A174898(a(n)) = 0. %C A174895 For every prime p, p and p^3 occur, as does the square of every semiprime pq with p and q distinct. - _T. D. Noe_, Oct 22 2010 %C A174895 For every prime p, every power p^t occurs, where t is a triangular number. %H A174895 T. D. Noe, <a href="/A174895/b174895.txt">Table of n, a(n) for n = 1..1000</a> %t A174895 nn=1000; Reap[Do[prod=Times@@Divisors[n]; If[prod<=nn, Sow[prod]], {n,nn}]][[2,1]] (* _T. D. Noe_, Oct 22 2010 *) %o A174895 (PARI) list(lim)=my(v=List(primes([2,lim]))); for(k=1,sqrtint(lim\=1), listput(v,factorback(divisors(k)))); forprime(p=2,sqrtnint(lim,3), listput(v, p^3)); select(k->k<=lim, Set(v)) \\ _Charles R Greathouse IV_, Sep 22 2015 %K A174895 nonn %O A174895 1,2 %A A174895 _Jaroslav Krizek_, Apr 01 2010 %E A174895 Corrected by _Jaroslav Krizek_, Apr 02 2010 %E A174895 Corrected and extended by _T. D. Noe_, Oct 22 2010