This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174903 #11 Apr 13 2024 05:12:53 %S A174903 0,0,0,0,0,1,0,0,0,0,0,3,0,0,1,0,0,2,0,1,0,0,0,5,0,0,0,1,0,5,0,0,0,0, %T A174903 1,6,0,0,0,3,0,3,0,0,3,0,0,7,0,0,0,0,0,3,0,3,0,0,0,9,0,0,1,0,0,3,0,0, %U A174903 0,3,0,9,0,0,2,0,1,2,0,5,0,0,0,9,0,0,0,1,0,9,1,0,0,0,0,9,0,0,1,2,0,2,0,1,4 %N A174903 Number of divisors d of n such that d<e<2*d for at least another divisor e of n. %H A174903 Reinhard Zumkeller, <a href="/A174903/b174903.txt">Table of n, a(n) for n = 1..10000</a> %F A174903 a(A174905(n)) = 0; a(A005279(n)) > 0. %F A174903 a(A174904(n)) = n and a(m) <> n for m < A174904(n). %F A174903 a(m)*a(n) <= a(m*n) for m, n coprime. %e A174903 a(12) = #{(2,3), (3,4), (4,6)} = 3; %e A174903 a(15) = #{(3,5)} = 1; %e A174903 a(18) = #{(2,3), (6,9)} = 2; %e A174903 a(20) = #{(4,5)} = 1; %e A174903 a(24) = #{(2,3), (3,4), (4,6), (6,8), (8,12)} = 5. %t A174903 a[n_] := Module[{d = Divisors[n]}, Count[d, _?(Length[Intersection[Range[# + 1, 2*# - 1], d]] > 0 &)]]; Array[a, 100] (* _Amiram Eldar_, Apr 13 2024 *) %o A174903 (Haskell) %o A174903 import Data.List (intersect) %o A174903 a174903 n = length [d | let ds = a027750_row n, d <- ds, %o A174903 not $ null [e | e <- [d+1 .. 2*d-1] `intersect` ds]] %o A174903 -- _Reinhard Zumkeller_, Sep 29 2014 %Y A174903 Cf. A000005, A005279, A174904, A174905. %K A174903 nonn %O A174903 1,12 %A A174903 _Reinhard Zumkeller_, Apr 01 2010