cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174924 Semiprimes sp(k) = q * r such that sum of digits of sp(k) equals sum of digits of the semiprime index k.

This page as a plain text file.
%I A174924 #3 Jan 22 2011 10:55:39
%S A174924 14,15,55,121,122,123,214,215,265,287,407,481,482,535,667,813,851,901,
%T A174924 951,1119,1149,1174,1537,1538,1639,1681,1961,2059,2117,2165,2209,2245,
%U A174924 2246,2386,2419,2458,2501,2513,2537,2603,2629,2641,2642,2643,2807,2845
%N A174924 Semiprimes sp(k) = q * r such that sum of digits of sp(k) equals sum of digits of the semiprime index k.
%C A174924 Numbers of the form q * r where q and r are primes, not necessarily distinct.
%C A174924 These numbers are also called semiprimes or 2-almost primes.
%C A174924 For primes with such a property see A033548
%e A174924 sp(5) = 14 = 2 * 7 is the 5th semiprime, sum of digits sod(14) = 1+4 = 5, 1st term
%e A174924 sp(6) = 15 = 3 * 5 is the 6th semiprime, sum of digits sod(15) = 1+5 = 6. 2nd term
%e A174924 sp(40) = 121 = 11^2 is the 40th semiprime, sum of digits sod(121) = 1+2+1 = 4, 4th term
%e A174924 Additionally for the prime based (q=r=11) square 121: sod(q) + sod(r) = 2 * sod(11) = 4
%e A174924 The first 110 such semiprimes:
%e A174924 14, 15, 55, 121, 122, 123, 214, 215, 265, 287, 407, 481, 482, 535, 667, 813, 851, 901, 951, 1119,
%e A174924 1149, 1174, 1537, 1538, 1639, 1681, 1961, 2059, 2117, 2165, 2209, 2245, 2246, 2386, 2419,
%e A174924 2458, 2501, 2513, 2537, 2603, 2629, 2641, 2642, 2643, 2807, 2845, 2846, 2858, 2859, 2921,
%e A174924 3158, 3205, 3218, 3427, 3439, 4322, 4333, 4367, 4661, 4713, 4714, 4735, 4811, 5221, 5317,
%e A174924 5318, 5615, 5707, 5753, 6009, 6022, 6023, 6046, 6081, 6082, 6117, 6193, 6283, 6371, 6411,
%e A174924 6423, 6514, 6515, 6527, 6541, 6542, 6593, 6635, 6649, 6683, 6694, 6905, 7251, 7291, 7363,
%e A174924 7387, 8023, 8102, 8153, 8203, 8401, 8402, 8403, 8503, 8531, 9019, 9201, 9223, 9271, 9902
%Y A174924 Cf. A033548, A046328
%K A174924 base,nonn,less
%O A174924 1,1
%A A174924 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 02 2010