This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174926 #6 Jan 28 2012 14:46:22 %S A174926 101,11,41,19,1601,251,1361,149,641,811,1009,12101,14401,1699,11969, %T A174926 2251,12569,1289,13241,1361,4001,4441,48409,10529,15761,62501,946769, %U A174926 4729,7841,8419,9001,9619,102409,10891,115601,12251,129641,11369,14449 %N A174926 Smallest prime which has a decimal representation which shows n^2 embedded in otherwise only decimal square digits 0, 1, 4 and 9. %C A174926 There are four decimal square digits: 0 = 0^2 = 0, 1 = 1^2, 4 = 2^2, 9 = 3^2. %C A174926 It is conjectured that sequence is infinite. %C A174926 Some primes of the form n^2//1 = 10 * n^2 + 1 are in this sequence: for n = 1, 2, 5, ... %C A174926 Note this curiosity of a double appearance of 1361 as 1//6^2//1 = p(6^2) = 1361 = p(19^2) = 1//19^2 or of 13691 = prime(1618) = 37^2//1 > 11369 = prime(1373) = 1//37^2 = p(37^2), 38th term of sequence %e A174926 Let // denote concatenation of digits. Then: %e A174926 101 = prime(26) = 1//0^2//1. %e A174926 11 = prime(5) = 1^2//1. %e A174926 41 = prime(13) = 2^2//1. %e A174926 19 = prime(8) = 1//3^2. %e A174926 1601 = prime(252) = 4^2//0//1. %e A174926 251 = prime(54) = 5^2//1. %e A174926 1361 = prime(218) = 1//6^2//1. %e A174926 149 = prime(35) = 1//7^2. %e A174926 641 = prime(116) = 8^2//1. %e A174926 811 = prime(141) = 9^2//1. %e A174926 1009 = prime(169) = 10^2//9. %e A174926 12101 = prime(1448) = 11^2//0//1. %Y A174926 Cf. A174884, A062584, A113616. %K A174926 base,nonn %O A174926 1,1 %A A174926 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 02 2010