This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174939 #14 May 03 2022 21:15:49 %S A174939 1,5,14,78,103,1399,1448,5544,6273,16273,16394,3002378,3002547, %T A174939 3040963,3091588,4140164,4140453,38152677,38153038,102153038, %U A174939 102347519,102581775,102582304,110177896480,110177912105,110178369081,110178900522,110660790826,110660791667 %N A174939 a(n) = Sum_{k<=n} A007955(k) * A007955(k) = Sum_{k<=n} A007955(k)^2, where A007955(m) = product of divisors of m. %H A174939 Michael S. Branicky, <a href="/A174939/b174939.txt">Table of n, a(n) for n = 1..10000</a> %F A174939 a(n) = Sum_{k=1..n} A062758(k). - _Michel Marcus_, May 03 2022 %e A174939 For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(3)^2 + b(4)^2 = 1^2 + 2^2 + 3^2 + 8^2 = 78. %t A174939 Accumulate@ Array[#^DivisorSigma[0, #] &, 29] (* _Michael De Vlieger_, May 03 2022 *) %o A174939 (PARI) a(n) = sum(k=1, n, k^numdiv(k)); \\ _Michel Marcus_, May 03 2022 %o A174939 (Python) %o A174939 from sympy import divisor_count %o A174939 from itertools import count, islice %o A174939 def agen(): %o A174939 an = 1 %o A174939 for k in count(2): %o A174939 yield an %o A174939 an += k**divisor_count(k) %o A174939 print(list(islice(agen(), 29))) # _Michael S. Branicky_, May 03 2022 %Y A174939 Cf. A007955, A062758. %K A174939 nonn %O A174939 1,2 %A A174939 _Jaroslav Krizek_, Apr 02 2010 %E A174939 a(27) and beyond from _Michael S. Branicky_, May 03 2022