cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174958 a(n)=Sum((A008292(n - j, j) - C(n - j - 1, j))/2, j=0, [(n - 1)/2]).

This page as a plain text file.
%I A174958 #10 Jun 02 2025 02:46:54
%S A174958 0,0,0,0,1,4,15,56,214,854,3607,16172,76853,386082,2044198,11373124,
%T A174958 66300473,403939612,2566116299,16962629860,116452790838,828903740138,
%U A174958 6107712000563,46521422681724,365811331693305,2965957618809246,24767913121016790,212803409969904264
%N A174958 a(n)=Sum((A008292(n - j, j) - C(n - j - 1, j))/2, j=0, [(n - 1)/2]).
%C A174958 Sequence A000800 minus the Lucas Fibonacci sum divided by two.
%D A174958 Burton, David M.,Elementary number theory,McGraw Hill,N.Y.,2002,p 286, problem 23
%t A174958 a = Table[Sum[(Eulerian[n -
%t A174958       j, j] - Binomial[n - j - 1, j])/2, {j, 0,
%t A174958             Floor[(n - 1)/2]}], {n, 0, 30}]
%Y A174958 Cf. A000800,A000045,A008292
%K A174958 nonn
%O A174958 0,6
%A A174958 _Roger L. Bagula_, Dec 02 2010