A174970 The base 6 expansion of the number of trailing zeros of the base 6 expansion of (6^n)!.
2, 25, 254, 2554, 25554, 255554, 2555553, 25555554, 255555552, 2555555552, 25555555551, 255555555551, 2555555555552, 25555555555551, 255555555555544, 2555555555555550, 25555555555555545, 255555555555555550
Offset: 1
Examples
(6^2)!={2,0,4,4,1,2,1,0,5,3,2,3,1,3,5,1,3,4,0,3,1,3,1,1,3,3,0,0,5,3,0,1,3,5,5, 0, 4,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0} (base 6). (17 zeros). 17 = {2,5} (base 6) ==> a(2)=25
Links
- Antonio M. Oller-Marcén and José María Grau, On the Base-b Expansion of the Number of Trailing Zeros of b^k!, J. Int. Seq. 14 (2011) 11.6.8.
Programs
-
Mathematica
Z6[n_]:=Floor[Sum[Floor[n/3^i],{i,1,Log[3,n]}]];Table[IntegerDigits[Z6[6^n],6],{n,1,40}]//TableForm