A175004 Interspersion related to the Wythoff Array.
1, 2, 3, 4, 6, 5, 7, 10, 9, 8, 12, 17, 15, 14, 11, 20, 28, 25, 23, 19, 13, 33, 46, 41, 38, 31, 22, 16, 54, 75, 67, 62, 51, 36, 27, 18, 88, 122, 109, 101, 83, 59, 44, 30, 21, 143, 198, 177, 164, 135, 96, 72, 49, 35, 24, 232, 321, 287, 266, 219, 156, 117, 80, 57, 40, 26, 376, 520, 465, 431, 355, 253, 190, 130, 93, 65, 43, 29
Offset: 1
Examples
Corner of the array: 1....2....4....7....12...20... (cf. A000071) 3....6....10...17...28...46... (cf. A001610) 5....9....15...25...41...67... (cf. A001595) 8....14...23...38...62...101..
Crossrefs
Cf. A035513.
Programs
-
Mathematica
(* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c= # cols of T, c1=# cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 2/x] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A175004 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011, added here Jun 03 2011 by Clark Kimberling *)
Comments