cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175009 Triangle read by rows, antidiagonals of an array formed from variants of A001318, generalized pentagonal numbers.

This page as a plain text file.
%I A175009 #11 Sep 08 2018 16:08:40
%S A175009 1,1,2,1,3,5,1,4,9,7,1,5,13,13,12,1,6,17,19,23,15,1,7,21,25,34,29,22,
%T A175009 1,8,25,31,45,43,43,26,1,9,29,37,56,57,64,51,35,1,10,33,43,67,71,85,
%U A175009 76,69,40,1,11,37,49,78,85,106,101,103,79,51
%N A175009 Triangle read by rows, antidiagonals of an array formed from variants of A001318, generalized pentagonal numbers.
%H A175009 Andrew Howroyd, <a href="/A175009/b175009.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)
%F A175009 Let row 1 of the array = A001318 starting with offset 1: (1, 2, 5, 7, 12,...)
%F A175009 For rows k>1, begin with A026741 starting (1, 3, 2, 5, 3, 7, 4, 9, 5, 11,...)
%F A175009 = generator Q. Then k-th row = partial sums of (1,...(k * Q)).
%F A175009 T(n,k) = 1 + (n-k+1)*(binomial(k+1, 2) - 1 - binomial(floor(k/2)+1, 2)). - _Andrew Howroyd_, Sep 08 2018
%e A175009 First few rows of the array:
%e A175009   1, 2,  5,  7,  12,  15,  22,  26,  35,  40, ...
%e A175009   1, 3,  9, 13,  23,  29,  43,  51,  69,  79, ...
%e A175009   1, 4, 13, 19,  34,  43,  64,  76, 103, 118, ...
%e A175009   1, 5, 17, 25,  45,  57,  85, 101, 137, 157, ...
%e A175009   1, 6, 21, 31,  56,  71, 106, 126, 171, 196, ...
%e A175009   ...
%e A175009 Example: row 3 is generated from 3 * (1, 3, 2, 5, 3, 7, ...) = (3, 9, 6, 15,...)
%e A175009 Preface with a 1 getting (1, 3, 9, 6, 15, ...) then take partial sums, = (1, 4, 13, 19, 34, 43, 64, ...).
%e A175009 ...
%e A175009 First few rows of the triangle:
%e A175009   1;
%e A175009   1,  2
%e A175009   1,  3,  5;
%e A175009   1,  4,  9,  7;
%e A175009   1,  5, 13, 13,  12;
%e A175009   1,  6, 17, 29,  23,  15;
%e A175009   1,  7, 21, 25,  34,  29,  22;
%e A175009   1,  8, 25, 31,  45,  43,  43,  26;
%e A175009   1,  9, 29, 37,  56,  57,  64,  51,  35;
%e A175009   1, 10, 33, 43,  67,  71,  85,  76,  69,  40;
%e A175009   1, 11, 37, 49,  78,  85, 106, 101, 103,  79,  51;
%e A175009   1, 12, 41, 55,  89,  99, 127, 126, 137, 118, 101,  57;
%e A175009   1, 13, 45, 61, 100, 113, 148, 151, 171, 157, 151, 113,  70;
%e A175009   1, 14, 49, 67, 111, 127, 169, 176, 205, 196, 201, 169, 139, 77;
%e A175009   ...
%o A175009 (PARI) T(n,k)=if(k<=n, 1 + (n-k+1)*(binomial(k+1, 2) - 1 - binomial(k\2+1, 2)), 0) \\ _Andrew Howroyd_, Sep 08 2018
%Y A175009 Row sums are A175006.
%Y A175009 Cf. A001318, A026741.
%K A175009 nonn,tabl
%O A175009 1,3
%A A175009 _Gary W. Adamson_, Apr 03 2010
%E A175009 a(22) corrected by _Andrew Howroyd_, Sep 08 2018