A175023 Irregular table read by rows: Row n (of A175022(n) terms) contains the run-lengths in the binary representation of A175020(n), reading left to right.
1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 4, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 3, 3, 6, 1, 6, 1, 5, 1, 1, 4, 1, 1, 1, 4, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 3, 3, 1, 2, 1, 2
Offset: 1
Examples
Table to start: 1 1,1 2 1,2 1,1,1 3 1,3 1,2,1 1,1,1,1 2,2 4 1,4 1,3,1 1,2,1,1 1,2,2 1,1,1,1,1 2,3 5 Note there are: 1 row that sums to 1, two rows that sum to 2, three rows that sum to 3, five rows that sum to 4, seven rows that sum to 5, etc, where 1,2,3,5,7,... are the number of unrestricted partitions of 1,2,3,4,5,...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..13055 (rows 1 <= n <= 2^11).
Programs
-
Maple
Contribution from R. J. Mathar, Feb 27 2010: (Start) runLSet := proc(n) option remember ; local bdg,lset,arl,p ; bdg := convert(n,base,2) ; lset := [] ; arl := -1 ; for p from 1 to nops(bdg) do if p = 1 then arl := 1 ; elif op(p,bdg) = op(p-1,bdg) then arl := arl+1 ; else if arl > 0 then lset := [arl,op(lset)] ; end if; arl := 1 ; end if; end do ; if arl > 0 then lset := [arl,op(lset)] ; end if; return lset ; end proc: A175023 := proc(n) local thisLset,k ; thisLset := runLSet(n) ; for k from 1 to n-1 do if convert(runLSet(k),multiset) = convert(thisLset,multiset) then return ; end if; end do ; printf("%a,",thisLset) ; return ; end proc: for n from 1 to 80 do A175023(n) ; end do; (End)
-
Mathematica
With[{s = Array[Sort@ Map[Length, Split@ IntegerDigits[#, 2]] &, 73]}, Map[Length /@ Split@ IntegerDigits[#, 2] &, Values[PositionIndex@ s][[All, 1]] ]] // Flatten (* Michael De Vlieger, Sep 03 2017 *)
Extensions
Terms beyond the 18th row from R. J. Mathar, Feb 27 2010
Comments