This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175038 #38 Feb 07 2019 12:59:18 %S A175038 0,1,1,4,2,6,2,6,10,2,10,6,2,6,10,10,2,10,6,2,10,6,10,14,7,3,9,3,9,39, %T A175038 9,15,3,27,3,15,15,9,15,15,3,27,3,9,3,33,33,9,3,9,15,3,27,15,15,15,3, %U A175038 15,9,3,27,39,9,3,9,39,15,27,3,9,15,21,15,15,9,15,21,9,21,27,3,27,3,15,9,15 %N A175038 In the sequence of positive integers A000027, number of digits between successive primes. %C A175038 From _Jamie Morken_, Feb 01 2019: (Start) %C A175038 For A006880(m) < n < A006880(m+1), a(n) = A046933(n)*(m + 1). %C A175038 For example m=1, n=24 then a(n)=7*2=14. %C A175038 For example m=2, n=26 then a(n)=1*3=3. %C A175038 For n = A006880(m+1), a(n) = A046933(n)*(m+1) + A033873(m + 1). %C A175038 For example m=1, n=25 then a(n)=3*2+1=7. %C A175038 (End) %H A175038 Muniru A Asiru, <a href="/A175038/b175038.txt">Table of n, a(n) for n = 1..10000</a> %e A175038 a(4) = 4 as prime(4) = 7 and prime(4+1) = 11 so the number of digits between these two primes is the number of digits of 8, 9 and 10. These numbers have 4 digits combined. Therefore a(4) = 4. - _David A. Corneth_, Jan 30 2019 %t A175038 Table[Length[Flatten[IntegerDigits/@Range[Prime[n]+1,Prime[n+1]-1]]],{n,200}] %o A175038 (PARI) a(n) = sum(k=prime(n)+1, prime(n+1)-1, #Str(k)); \\ _Michel Marcus_, Jan 30 2019 %Y A175038 Cf. A000027, A113610, A046933, A006880, A033873. %K A175038 base,nonn %O A175038 1,4 %A A175038 _Zak Seidov_, Nov 13 2009