This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175064 #22 Oct 27 2024 14:29:35 %S A175064 1,2,2,2,3,2,2,2,2,2,4,3,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,3,2,2,3, %T A175064 2,4,2,2,2,2,2,4,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2, %U A175064 2,2,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2,2 %N A175064 a(1) = 1; for n >= 2, a(n) = number of ways h to write the n-th perfect power A001597(n) as m^k with m >= 2 and k >= 1. %C A175064 Perfect powers with first occurrence of h >= 2: 4, 16, 64, 65536, 4096, ... [The perfect power corresponding to h is A175065(h) = 2^A005179(h). - _Jianing Song_, Oct 27 2024] %F A175064 a(n) = A000005(A253641(A001597(n))) = A253642(n)+1. - _M. F. Hasler_, Jan 25 2015 %e A175064 For n = 11: A001597(11) = 64; there are 4 ways to write 64 as m^k: 64^1 = 8^2 = 4^3 = 2^6. %o A175064 (Python) %o A175064 from math import gcd %o A175064 from sympy import mobius, integer_nthroot, divisor_count, factorint %o A175064 def A175064(n): %o A175064 if n == 1: return 1 %o A175064 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A175064 kmin, kmax = 1,2 %o A175064 while f(kmax) >= kmax: %o A175064 kmax <<= 1 %o A175064 while True: %o A175064 kmid = kmax+kmin>>1 %o A175064 if f(kmid) < kmid: %o A175064 kmax = kmid %o A175064 else: %o A175064 kmin = kmid %o A175064 if kmax-kmin <= 1: %o A175064 break %o A175064 return divisor_count(gcd(*factorint(kmax).values())) # _Chai Wah Wu_, Aug 13 2024 %Y A175064 Cf. A253641, A253642, A000005, A001597. %K A175064 nonn %O A175064 1,2 %A A175064 _Jaroslav Krizek_, Jan 23 2010 %E A175064 Extended by _T. D. Noe_, Apr 21 2011 %E A175064 Definition clarified by _Jonathan Sondow_, Nov 30 2012