This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175069 #11 Nov 21 2017 21:34:43 %S A175069 1,1,1,2,1,1,1,2,3,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,5,1,3,1,1,1,1,2,1,1, %T A175069 1,6,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,64,1,1,1,1, %U A175069 1,1,1,1,1,1,1,1,1,1,1,1,27,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,10 %N A175069 a(n) = product of perfect divisors of n / n. %C A175069 A perfect divisor of n is a divisor d such that d^k = n for some k >= 1. %H A175069 Antti Karttunen, <a href="/A175069/b175069.txt">Table of n, a(n) for n = 1..16384</a> %F A175069 a(n) = A175068(n) / n. a(n) > 1 for perfect powers n = A001597(m) for m > 2. %t A175069 Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]]/n, {n, 105}] (* _Michael De Vlieger_, Nov 21 2017 *) %o A175069 (PARI) %o A175069 A175068(n) = { my(m=1); fordiv(n,d,if((1==d)||(d^valuation(n,d))==n,m*=d)); (m); }; %o A175069 A175069(n) = (A175068(n)/n); \\ _Antti Karttunen_, Nov 21 2017 %Y A175069 Cf. A175068. %K A175069 nonn %O A175069 1,4 %A A175069 _Jaroslav Krizek_, Jan 23 2010