This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175073 #25 Mar 26 2024 04:16:28 %S A175073 3,11,17,23,29,37,41,47,53,59,67,71,79,83,89,97,101,107,113,127,131, %T A175073 137,149,157,163,167,173,179,191,197,211,223,227,233,239,251,257,263, %U A175073 269,277,281,293,307 %N A175073 Primes q with result 1 under iterations of {r mod (max prime p < r)} starting at r = q. %C A175073 Subsequence of A175071. %C A175073 Union of a(n) and A175074 is A175071. - _Jaroslav Krizek_, Jan 30 2010 %C A175073 The terms in A025584 but not in here are 2, 2999, 3299, 5147, 5981, 8999, 9587, ... , apparently those listed in A175080. - _R. J. Mathar_, Feb 01 2010 %C A175073 a(n-1)=A156828(n) in the range n=3..348, but afterwards the sequences differ because numbers like 2999 and 3229 are in A156828 but not in here. - _R. J. Mathar_, Mar 01 2010 %C A175073 Conjecture: under this iteration procedure, all primes eventually will yield either a 2 or a 1. If a 2 results, all subsequent terms are zeros; if a 1 results, all subsequent terms are -1s. The conjecture is true for the first 2 million primes. - _Harvey P. Dale_, Jan 17 2014 %H A175073 R. J. Mathar, <a href="/A175073/b175073.txt">Table of n, a(n) for n = 1..10000</a> %e A175073 Iteration procedure for a(2) = 11: 11 mod 7 = 4, 4 mod 3 = 1. %p A175073 isA175073 := proc(p) %p A175073 local r,rold; %p A175073 if not isprime(p) then %p A175073 return false; %p A175073 end if; %p A175073 r := p ; %p A175073 while true do %p A175073 rold :=r ; %p A175073 if r = 2 then %p A175073 return false ; %p A175073 end if; %p A175073 r := modp(r,prevprime(r)) ; %p A175073 if r = 1 then %p A175073 return true; %p A175073 elif r= rold then %p A175073 return false ; %p A175073 end if; %p A175073 end do: %p A175073 end proc: %p A175073 A175073 := proc(n) %p A175073 option remember ; %p A175073 if n= 1 then %p A175073 3; %p A175073 else %p A175073 for p from procname(n-1)+2 by 2 do %p A175073 if isA175073(p) then %p A175073 return p; %p A175073 end if; %p A175073 end do: %p A175073 end if; %p A175073 end proc: %p A175073 seq(A175073(n),n=1..40) ; # _R. J. Mathar_, Mar 25 2024 %t A175073 r1Q[n_] := FixedPoint[Mod[#, NextPrime[#, -1]] &, n] == -1; Select[Prime[ Range[70]],r1Q] (* This program relies upon the conjecture described in the comments above *) (* _Harvey P. Dale_, Jan 17 2014 *) %Y A175073 Note that all three of A025584, A156828, A175073 are different sequences. - _N. J. A. Sloane_, Apr 10 2011 %K A175073 nonn %O A175073 1,1 %A A175073 _Jaroslav Krizek_, Jan 23 2010