cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175087 Number of numbers whose product of perfect divisors is equal to n.

This page as a plain text file.
%I A175087 #20 Jan 09 2023 13:02:29
%S A175087 1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,
%T A175087 1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A175087 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1
%N A175087 Number of numbers whose product of perfect divisors is equal to n.
%C A175087 Perfect divisor of n is divisor d such that d^k = n for some k >= 1. See A175068 (product of perfect divisors of n), A175084 (possible values for product of perfect divisors of n) and A175085 (numbers m such that product of perfect divisors of x = m has no solution). a(n) = 0 or 1 for all n.
%C A175087 That is, this is the characteristic function of A175084. - _Antti Karttunen_, Nov 21 2017
%H A175087 Antti Karttunen, <a href="/A175087/b175087.txt">Table of n, a(n) for n = 1..16384</a>
%H A175087 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A175087 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A175087 a(n) = Sum_{k=1..n} [A175068(k)==n]. - _Antti Karttunen_, Nov 21 2017
%t A175087 With[{nn = 105}, ReplacePart[ConstantArray[0, nn], Flatten@ Table[{i -> 1}, {i, TakeWhile[#, # <= nn &] &@ Union@ Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]], {n, nn}]}] ] ] (* _Michael De Vlieger_, Nov 21 2017 *)
%o A175087 (PARI)
%o A175087 A175068(n) = { my(m=1); fordiv(n,d,if((d>1)&&(d^valuation(n,d))==n,m*=d)); (m); };
%o A175087 A175087(n) = sum(i=1,n,A175068(i)==n); \\ _Antti Karttunen_, Nov 21 2017
%Y A175087 Cf. A175068, A175084 (positions of ones), A175085 (of zeros).
%K A175087 nonn
%O A175087 1,4096
%A A175087 _Jaroslav Krizek_, Jan 24 2010
%E A175087 More terms from _Antti Karttunen_, Nov 21 2017