cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175105 Triangle T(n,k) read by rows. T(n,1)=1; T(n,k) = Sum_{i=1..k-1} ( T(n-i,k-1) + T(n-i,k) ), k>1.

This page as a plain text file.
%I A175105 #38 Mar 15 2024 02:24:42
%S A175105 1,1,1,1,2,1,1,3,4,1,1,4,10,6,1,1,5,21,22,8,1,1,6,40,64,38,10,1,1,7,
%T A175105 72,163,140,58,12,1,1,8,125,382,442,256,82,14,1,1,9,212,846,1259,954,
%U A175105 420,110,16,1,1,10,354,1800,3334,3166,1794,640,142,18,1,1,11,585,3719,8366,9657,6754,3074,924,178,20,1
%N A175105 Triangle T(n,k) read by rows. T(n,1)=1; T(n,k) = Sum_{i=1..k-1} ( T(n-i,k-1) + T(n-i,k) ), k>1.
%C A175105 Are there closed forms for diagonals and columns?
%C A175105 With the definition of the array, I note that the sequence (phi(k)) (phi(k)= g.f. of the column number k) is given by the recurrence relation: phi(k+1)=phi(k)*(1-z^k)/(1-2*z+z^(k+1)). The consequence is: the sequence number k+1 column is the convolution of the k-one and a "-acci like" sequence whose g.f. is given by (1-z^k)/(1-2*z+z^(k+1)). E.g., the 2-column is the convolution of the 1-column and the sequence 1, 2, 3, 5, ... classical Fibonacci sequence without the first 1. The 3-column is the convolution of the 2-column and 1, 2, 4, 7, 13, ... tribonacci like-sequence (exactly: A000073 without beginning 0, 0, 1). - _Richard Choulet_, Feb 19 2010
%C A175105 Relation to metallic means:
%C A175105 T(n,1)=1, k>1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1) + 0*Sum_{i=1..k-1} T(n-i,k)
%C A175105 has antidiagonal sums for which the limiting ratio tends to the golden ratio, A001622.
%C A175105 T(n,1)=1, k>1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1) + 1*Sum_{i=1..k-1} T(n-i,k)
%C A175105 has antidiagonal sums for which the limiting ratio tends to the silver ratio, A014176.
%C A175105 T(n,1)=1, k>1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1) + 2*Sum_{i=1..k-1} T(n-i,k)
%C A175105 has antidiagonal sums for which the limiting ratio tends to the bronze ratio, A098316.
%C A175105 A similar point can be made about variations of the Pascal triangle.
%H A175105 Wikipedia, <a href="https://en.wikipedia.org/wiki/Metallic_mean">Metallic mean</a>
%F A175105 The g.f of the number k column is phi(k)(z) = (1/(1-z))*Product_{i=1..k-1}(1-z^i)/(1-2*z+z^(i+1)). - _Richard Choulet_, Feb 19 2010
%e A175105 Table begins:
%e A175105   n/k| 1    2    3    4    5    6    7    8    9   10   11
%e A175105   ---+-----------------------------------------------------
%e A175105    1 | 1
%e A175105    2 | 1    1
%e A175105    3 | 1    2    1
%e A175105    4 | 1    3    4    1
%e A175105    5 | 1    4   10    6    1
%e A175105    6 | 1    5   21   22    8    1
%e A175105    7 | 1    6   40   64   38   10    1
%e A175105    8 | 1    7   72  163  140   58   12    1
%e A175105    9 | 1    8  125  382  442  256   82   14    1
%e A175105   10 | 1    9  212  846 1259  954  420  110   16    1
%e A175105   11 | 1   10  354 1800 3334 3166 1794  640  142   18    1
%e A175105 Example: T(8,4) = 163 because it is the sum of the numbers:
%e A175105   10    6
%e A175105   21   22
%e A175105   40   64
%e A175105 For k=1, we obtain phi(k)(z)=1/(1-z) which is clear; for k=2, we obtain phi(k)(z)=1/(1-z)^2. For k=3, we obtain phi(3)(z)=(1+z)/((1-2*z+z^3)*(1-z)); this is A001891 without the beginning zero. - _Richard Choulet_, Feb 19 2010
%p A175105 A175105 := proc(n,k) if k =1 then 1; elif k > n or k< 1 then 0 ; else    add(procname(n-i,k-1)+procname(n-i,k),i=1..k-1) ; end if; end proc; # _R. J. Mathar_, Feb 16 2011
%t A175105 T[_, 1] = 1;
%t A175105 T[n_, k_] /; 1<k<=n := T[n, k] = Sum[T[n-i, k-1]+T[n-i, k], {i, 1, k-1}];
%t A175105 T[_, _] = 0;
%t A175105 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 19 2019 *)
%o A175105 (Excel) =if(column()=1;1;if(row()>=column();sum(indirect(address(row()-column()+1;column()-1;4)&":"&address(row()-column()+column()-1;column()-1;4);4))+sum(indirect(address(row()-column()+1;column();4)&":"&address(row()-column()+column()-1;column();4);4));0)) ' _Mats Granvik_, Mar 28 2010
%Y A175105 Cf. A172119, A051731, A001891 (column k=3), A176084 (row sums).
%Y A175105 (1-((-1)^T(n, k)))/2 = T(n, k) mod 2 = A051731.
%Y A175105 Cf. A179807=antidiagonal sums. A179748 has simpler recurrence.
%K A175105 nonn,tabl
%O A175105 1,5
%A A175105 _Mats Granvik_, Feb 10 2010
%E A175105 Corrected and edited by _Mats Granvik_, Jul 28 2010, Dec 09 2010
%E A175105 Choulet formulas indices shifted (to adapt to the new column index) by _R. J. Mathar_, Dec 13 2010