This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175124 #49 Jul 28 2025 10:51:28 %S A175124 1,1,1,1,4,1,1,10,10,1,1,20,48,20,1,1,35,161,161,35,1,1,56,434,824, %T A175124 434,56,1,1,84,1008,3186,3186,1008,84,1,1,120,2100,10152,16840,10152, %U A175124 2100,120,1,1,165,4026,28050,70807,70807,28050,4026,165,1 %N A175124 A symmetric triangle, with sum the large Schröder numbers. %C A175124 a(n) is the number of noncrossing plants in the n+1 polygon, with no right corner, according to the number of left and top corners. %C A175124 T(n,k) counts ordered complete binary trees with n leaves having k internal vertices colored black, the remaining n-1-k internal vertices colored white, and such that each vertex and its rightmost child have different colors. An example is given below. See Example 1.6.7 in [Drake] but note this triangle is not equal to A089447 as stated there. Compare with A196201. - _Peter Bala_, Sep 30 2011 %C A175124 Alternating sums seems to be A027307 (areated). - _F. Chapoton_, Mar 14 2024 %H A175124 Brian Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University. %H A175124 Shishuo Fu, Z. Lin, and J. Zeng, <a href="http://arxiv.org/abs/1507.05184">Two new unimodal descent polynomials</a>, arXiv preprint arXiv:1507.05184 [math.CO], 2015. %H A175124 Robert Moerman and Lauren K. Williams, <a href="https://doi.org/10.5070/C63160423">Grass(mannian) trees and forests: Variations of the exponential formula, with applications to the momentum amplituhedron</a>, Comb. Theor. (2023) Vol. 3, No. 1, Art. 10, see p. 13. %H A175124 Matteo Parisi, Melissa Sherman-Bennett, Ran Tessler, and Lauren Williams, <a href="https://arxiv.org/abs/2404.03026">The Magic Number Conjecture for the m=2 amplituhedron and Parke-Taylor identities</a>, arXiv:2404.03026 [math.CO], 2024. See p. 8. See also <a href="https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2025/103.pdf">Proc. 37th Conf. Formal Power Ser. Alg. Comb.</a>, Sém. Lotharingien Comb. (2025) Vol. 93B, Art. No. 103. See p. 5. %H A175124 Matteo Parisi, Melissa Sherman-Bennett, and Lauren Williams, <a href="https://arxiv.org/abs/2104.08254">The m=2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers</a>, arXiv:2104.08254 [math.CO], 2021. %H A175124 Jeremy Quail and Puck Rombach, <a href="https://arxiv.org/abs/2402.17841">Positroid envelopes and graphic positroids</a>, arXiv:2402.17841 [math.CO], 2024. See p. 31. %F A175124 G.f. is the composition inverse of P*(1-a*b*P^2)/(1+a*P)/(1+b*P). %e A175124 Triangle begins %e A175124 n\k.|..1....2....3....4....5....6....7 %e A175124 = = = = = = = = = = = = = = = = = = = = %e A175124 ..1.|..1 %e A175124 ..2.|..1....1 %e A175124 ..3.|..1....4....1 %e A175124 ..4.|..1...10...10....1 %e A175124 ..5.|..1...20...48...20....1 %e A175124 ..6.|..1...35..161..161...35....1 %e A175124 ..7.|..1...56..434..824..434...56....1 %e A175124 ... %e A175124 Row 3: b^2+4*b*w+w^2. Internal vertices colored either b(lack) or w(hite); 3 uncolored leaf nodes shown as o. %e A175124 . %e A175124 Weight b^2 w^2 %e A175124 b w %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 b o w o %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 o o o o %e A175124 . %e A175124 Weight b*w %e A175124 b w %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 w o b o %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 o o o o %e A175124 . %e A175124 b w %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 o w o b %e A175124 /\ /\ %e A175124 / \ / \ %e A175124 o o o o %p A175124 f:=RootOf((1+a*_Z)*(1+b*_Z)*x-_Z*(1-a*b*_Z^2));expand(taylor(f,x,4)); %t A175124 ab = InverseSeries[P*(1-a*b*P^2)/(1+a*P)/(1+b*P)+O[P]^12, P] // Normal // CoefficientList[#, P]&; (List @@@ ab) /. a|b -> 1 // Rest // Flatten (* _Jean-François Alcover_, Feb 23 2017 *) %Y A175124 Cf. A006318 (row sums), A196201, A027307. %K A175124 nonn,tabl %O A175124 1,5 %A A175124 _F. Chapoton_, Feb 15 2010