cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175137 Irregular triangle T(n,k) read by rows: number of orbits of size 2^k on Dyck n-paths.

Original entry on oeis.org

1, 2, 3, 1, 6, 2, 1, 12, 7, 4, 26, 23, 11, 2, 59, 71, 41, 8, 138, 224, 151, 30, 332, 709, 550, 114, 814, 2253, 1993, 406, 16, 2028, 7189, 7211, 1564, 64, 5118, 23045, 26221, 6010, 240, 13054, 74213, 95583, 23062, 912, 33598, 239979, 349145, 88530, 3504, 87143
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2010

Keywords

Examples

			Triangle starts at row n=1
1;
2;
3,1;
6,2,1;
12,7,4;
26,23,11,2;
59,71,41,8;
138,224,151,30;
		

Crossrefs

Cf. A127384 (row sums).

Programs

  • Maple
    Fx := proc(k) local ak ; ak := (2*x)^(2^k+1) ; (1-ak-(1-4*x+(ak*x*(2-ak))/(1-x))^(1/2))/(2*x-ak) ; end proc: ff := [] : for k from 0 to 5 do ff := [op(ff), taylor(Fx(k),x=0,18)] ; end do : F := proc(n,k) global ff ; coeftayl(op(k+1,ff),x=0,n) ; end proc: T := proc(n,k) global ff ; if k = 0 then F(n,0) ; else (F(n,k)-F(n,k-1))/2^k ; end if; end proc: for n from 1 to 17 do for k from 0 to 5 do if T(n,k) <> 0 then printf("%d,",T(n,k)) ; fi; end do ; printf("\n") ; end do ;