This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175204 #14 Feb 16 2025 08:33:12 %S A175204 1,2,4,10,20,68,154,644,2210,6578,35308,92378,310154,1042404,5617820, %T A175204 35515634,184055430,1082950218,5386096364,19304763268,254772473240, %U A175204 1383442606194 %N A175204 Smallest index m such that omega(m) + omega(m+1) + omega(m+2) = n. %C A175204 The arithmetic function omega(m) + omega(m+1) + omega(m+2) = Sum_{j=0..2} A001221(m+j) starts 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 5, 5 (m >= 1). %C A175204 The sequence is a "first-serve" inverse of this function. %C A175204 a(24) <= 6127197154440. [_Donovan Johnson_, Oct 22 2010] %D A175204 J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/ Cambridge University Press London 1935. %H A175204 S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper35/page1.htm">The normal number of prime factors of a number</a>, Quart. J. Math. 48 (1917), 76-92. %H A175204 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>. %e A175204 For n=2, m=1 and omega(1) + omega(2) + omega(3) = 0 + 1 + 1 = 2. %e A175204 For n=3, m=2 and omega(2) + omega(3) + omega(4) = 1 + 1 + 1 = 3. %e A175204 For n=4, m=4 and omega(4) + omega(5) + omega(6) = 1 + 1 + 2 = 4. %e A175204 For n=5, m=10 and omega(10) + omega(11) + omega(12) = 2 + 1 + 2 = 5. %e A175204 For n=6, m=20 and omega(20) + omega(21) + omega(22) = 2 + 2 + 2 = 6. %e A175204 For n=7, m=68 and omega(68) + omega(69) + omega(70) = 2 + 2 + 3 = 7. %p A175204 with(numtheory): for k from 1 to 20 do :indic:=0: for n from 1 to 2000 do : %p A175204 s1:= ifactors(n)[2] :u1 :=s1[i][1], i=1..nops(s1):uu1:= nops(s1): s2:= ifactors(n+1)[2] :u2 :=s2[i][1], i=1..nops(s2): uu2:= nops(s2): s3:= ifactors(n+2)[2] :u3 :=s3[i][1], i=1..nops(s3): uu3:= nops(s3): if uu1+uu2+uu3 = k and indic=0 then print(n): indic:=1:else fi:od:od: %Y A175204 Cf. A001221, A144494. %K A175204 nonn,more %O A175204 2,2 %A A175204 _Michel Lagneau_, Mar 04 2010 %E A175204 Added punctuation to the examples. Corrected and edited by _Michel Lagneau_, Apr 25 2010 %E A175204 Use of variables adapted to OEIS standards by _R. J. Mathar_, Oct 12 2010 %E A175204 a(16) corrected and a(19)-a(23) from _Donovan Johnson_, Oct 22 2010