cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175215 The smaller member of a twin prime pair in which both primes are emirps.

This page as a plain text file.
%I A175215 #19 Apr 03 2023 10:36:12
%S A175215 71,1031,1151,1229,3299,3371,3389,3467,3851,7457,7949,9011,9437,10007,
%T A175215 10067,10457,10889,11159,11699,11717,11777,11969,12071,12107,13709,
%U A175215 13757,14447,14549,14591,15731,16451,17207,17681,17747,17909,18911,19421,19541
%N A175215 The smaller member of a twin prime pair in which both primes are emirps.
%C A175215 Subsequence of A001359 and of A006567.
%H A175215 Metin Sariyar, <a href="/A175215/b175215.txt">Table of n, a(n) for n = 1..16451</a>
%H A175215 Green, Prime Curios, <a href="https://t5k.org/curios/page.php?curio_id=20903">Entry 71</a>
%H A175215 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_973.htm">Puzzle 973. Largest known twin & emirp</a>, The Prime Puzzles & Problems Connection.
%p A175215 read("transforms") ; isA001359 := proc(n) isprime(n) and isprime(n+2) ; end proc:
%p A175215 isA006567 := proc(n) local r ; r := digrev(n) ; isprime(n) and isprime(r) and n<> r ; end proc:
%p A175215 isA175215 := proc(n) isA001359(n) and isA006567(n) and isA006567(n+2) ; end proc:
%p A175215 for i from 1 to 10000 do p := ithprime(i) ; if isA175215(p) then printf("%d,",p) ; end if; end do: # _R. J. Mathar_, Mar 16 2010
%t A175215 Do[IR=IntegerReverse;Q=PrimeQ;If[Q[n]&&Q[n+2]&&Q[IR[n]]&&PrimeQ[IR[n+2]]&&!n==IR[n]&&!(n+2)==IR[n+2],Print[n]],{n,5,10^5,6}] (* _Metin Sariyar_, Dec 17 2019 *)
%o A175215 (Magma) emirp:=func<n|IsPrime(n) and IsPrime(Seqint(Reverse(Intseq(n)))) and Intseq(n) ne Reverse(Intseq(n))>; [p:p in PrimesUpTo(20000)| emirp(p) and emirp(p+2)]; // _Marius A. Burtea_, Dec 17 2019
%Y A175215 Cf. A001359, A006567.
%K A175215 nonn,base
%O A175215 1,1
%A A175215 _Lekraj Beedassy_, Mar 06 2010
%E A175215 11699 inserted, 14921 -> 19421 corrected by _R. J. Mathar_, Mar 16 2010