This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175220 #6 Jul 05 2016 19:12:35 %S A175220 10,10,12,14,18,20,24,25,28,35,36,44,48,49,52,58,65,66,74,77,78,85,88, %T A175220 94,104,108,110,114,115,118,133,136,143,144,155,156,162,169,172,178, %U A175220 185,186,198,200,203,204,216,230,234,235,238,245,246,256,262,268,275 %N A175220 The fifth nonprimes after the primes. %C A175220 From _Robert Israel_, Jul 05 2016: (Start) %C A175220 For n>1, there are the following cases: %C A175220 If prime(n)+2 and prime(n)+4 are composite, then a(n) = prime(n)+5. %C A175220 If exactly one of prime(n)+2 and prime(n)+4 is prime, and prime(n)+6 is composite, then a(n) = prime(n) + 6. %C A175220 Otherwise, a(n) = prime(n) + 7. (End) %H A175220 Robert Israel, <a href="/A175220/b175220.txt">Table of n, a(n) for n = 1..10000</a> %p A175220 N:= 1000: # to get all entries <= N %p A175220 Primes:= select(isprime, [2,seq(i,i=3..N+7,2)]): %p A175220 nprimes:= nops(Primes): %p A175220 A[1]:= 10: %p A175220 A[2]:= 10: %p A175220 for i from 3 to nprimes-1 do %p A175220 p:= Primes[i]; %p A175220 if p + 5 > N then break fi; %p A175220 if Primes[i+1] > p + 4 then A[i]:= p + 5 %p A175220 elif (i = nprimes-1 or Primes[i+2] <> p+6) and p+6 <= N then A[i]:= p + 6 %p A175220 elif p+7 <= N then A[i]:= p + 7 %p A175220 else break %p A175220 fi %p A175220 od: %p A175220 seq(A[j],j=1..i-1); # _Robert Israel_, Jul 05 2016 %K A175220 nonn %O A175220 1,1 %A A175220 _Jaroslav Krizek_, Mar 06 2010