This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175243 #18 Jun 06 2023 10:50:08 %S A175243 1,2,1,3,12,3,4,75,294,16,5,384,11664,16384,125,6,1805,367500,5647152, %T A175243 1640250,1296,7,8100,10609215,1528823808,6291456000,259200000,16807,8, %U A175243 35287,292626432,380008339280,18911429680500,13556617751088,59549251454 %N A175243 Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n. %H A175243 F. T. Boesch and H. Prodinger, <a href="http://dx.doi.org/10.1007/BF01788093">Spanning tree formulas and Chebyshev polynomials</a>, Graphs Combinat. 2 (1986) 191-200. %H A175243 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A175243 R_n(m) = n*2^(m-1)* (T(n,1+m/2)-1)^(m-1)/m, where T(n,x) are Chebyshev polynomials, A008310. %F A175243 Each column of the array is a linear divisibility sequence. Conjecturally, the k-th column satisfies a linear recurrence of order 4*k - 2. - _Peter Bala_, May 04 2014 %e A175243 The array starts in row n=1 as: %e A175243 1, 1, 3, 16, 125 %e A175243 2, 12, 294, 16384, 1640250 %e A175243 3, 75, 11664, 5647152, 6291456000 %e A175243 4, 384, 367500, 1528823808, %e A175243 5, 1805, 10609215, %p A175243 A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc: %p A175243 for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do: %t A175243 r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* _Jean-François Alcover_, Jan 10 2014 *) %Y A175243 Cf. A006235 (column 2), A000272, A212798 (column 3). %K A175243 easy,nonn,tabl %O A175243 1,2 %A A175243 _R. J. Mathar_, Mar 13 2010