cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175252 Numbers whose digit representation is equal to the digit representation of the initial terms of their sets of divisors in increasing order.

This page as a plain text file.
%I A175252 #150 Dec 21 2022 20:41:08
%S A175252 1,12,124,135,1525,13515,124816,12356910,1243162124,1525125625,
%T A175252 12478141928,12510254150,1234689111216,1351553159265,1597717414885,
%U A175252 12356910151830,13791121336377,123561015253050,124510202550100,135152575125375,1236103206309618,123456101215203060,123569101518304590
%N A175252 Numbers whose digit representation is equal to the digit representation of the initial terms of their sets of divisors in increasing order.
%C A175252 From _Michel Marcus_, Sep 25 2022: (Start)
%C A175252 The term 124 (2^2*31) corresponds to the term of A077352 that is a prime.
%C A175252 The terms 135 (5*3^3), 1525 (5^2*61) and 1525125625 (5^4*2440201) correspond to the terms of A077353 that are powers of primes. (End)
%C A175252 The term 1597717414885 = 5 * 977 * 1741 * 187861, found by _David A. Corneth_, is especially remarkable for the magnitude of its 2nd smallest prime factor (counting repetitions). - _Peter Munn_, Oct 10 2022
%C A175252 Define g(n) to be the LCM of the divisors of a(n) that appear in the digit string of a(n) as specified in the definition, and let f(n) = log(g(n))/log(a(n)). Are there are only finitely many n for which f(n) >= f(4) = log(15)/log(135) = 0.55206901...? - _Peter Munn_, Oct 19 2022
%C A175252 a(26) > 10^23 (there are no terms with 23 digits). - _Tim Peters_, Dec 21 2022
%H A175252 Tim Peters, <a href="/A175252/b175252.txt">Table of n, a(n) for n = 1..25</a>
%H A175252 David A. Corneth and Michel Marcus, <a href="/A175252/a175252_5.gp.txt">Some terms found in search for terms for A357692</a>
%H A175252 David A. Corneth and Michel Marcus, <a href="/A175252/a175252_6.gp.txt">Some terms <= 10^500</a>
%e A175252 a(1) = 1: d(1) = {1}.
%e A175252 a(2) = 12: d(12) = {1, 2, 3, 4, 6, 12}.
%e A175252 a(3) = 124: d(124) = {1, 2, 4, 31, 62, 124}.
%e A175252 a(4) = 135: d(135) = {1, 3, 5, 9, 15, 27, 45, 135}.
%o A175252 (PARI) isok(k) = my(s=""); fordiv(k, d, s=concat(s, Str(d)); if (eval(s)==k, return(1)); if (eval(s)> k, return(0))); \\ _Michel Marcus_, Sep 22 2022
%o A175252 (PARI) is(n, {u = 10^5}) = { my(oldu = u, s, d, fe); s = ""; u = min(u, n); fe = factor(n, u); d = divisors(fe); if(#fe~ > 0 && fe[#fe~, 1] > u, d = select(x -> x < fe[#fe~, 1], d); ); for(i = 1, #d, if(d[i] > u, return(is(n, 10*oldu)); ); s=concat(s, Str(d[i])); if(eval(s) == n, return(1)); if(eval(s) > n, return(0)); ); is(n, 10*oldu); } \\ _David A. Corneth_, Oct 12 2022, Nov 07 2022
%o A175252 (Python)
%o A175252 from sympy import divisors
%o A175252 def ok(n):
%o A175252     target, s = str(n), ""
%o A175252     if target[0] != "1": return False
%o A175252     for d in divisors(n):
%o A175252         s += str(d)
%o A175252         if len(s) >= len(target): return s == target
%o A175252         elif not target.startswith(s): return False
%o A175252 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Sep 22 2022
%Y A175252 Cf. A037278, A357692. Subsequence of A131835.
%Y A175252 Cf. A077352, A077353.
%K A175252 nonn,base
%O A175252 1,2
%A A175252 _Jaroslav Krizek_, Mar 14 2010
%E A175252 a(9)-a(10) from _Michel Marcus_, Sep 22 2022
%E A175252 a(11)-a(12) from _Michel Marcus_, Oct 02 2022
%E A175252 a(13)-a(15) from _Tim Peters_, Oct 17 2022
%E A175252 a(16)-a(17) from _Giovanni Resta_, Oct 20 2022
%E A175252 a(18)-a(20) from _Tim Peters_, Oct 27 2022
%E A175252 a(21) from _Tim Peters_, Oct 30 2022
%E A175252 a(22)-a(23) from _Tim Peters_, Nov 04 2022