cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175312 Maximum value on Lower Shuffle Part of Kimberling's Expulsion Array (A035486).

This page as a plain text file.
%I A175312 #25 Jun 11 2025 02:50:07
%S A175312 1,3,5,7,10,12,15,17,20,22,25,28,31,33,36,39,42,44,47,50,53,55,58,61,
%T A175312 64,67,70,73,76,78,81,84,87,90,93,96,99,101,104,107,110,113,116,119,
%U A175312 122,124,127,130,133,136,139,142,145,148,151,154,157,160,163,166,169,171
%N A175312 Maximum value on Lower Shuffle Part of Kimberling's Expulsion Array (A035486).
%C A175312 a(n) is the maximum value on or below diagonal of Kimberling's Expulsion Array; this part could be called the Lower Shuffle.
%D A175312 D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998
%D A175312 R. K. Guy, Unsolved Problems Number Theory, Sect E35.
%H A175312 Enrique Pérez Herrero, <a href="/A175312/b175312.txt">Table of n, a(n) for n=1..20000</a>
%H A175312 Clark Kimberling, <a href="https://cms.math.ca/crux/backfile/Crux_v17n02_Feb.pdf">Problem 1615</a>, Crux Mathematicorum, Vol. 17 (2) 44 1991; <a href="https://cms.math.ca/crux/backfile/Crux_v18n03_Mar.pdf">Solution to Problem 1615</a>, Crux Mathematicorum, Vol. 18, March 1992, p. 82-83.
%H A175312 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KimberlingSequence.html">Kimberling Sequence</a>.
%F A175312 a(n) = 1 + 3(n-lambda(n)) - floor((n+2)/2^lambda(n)), lambda(n) = floor(log_2((n+2)/3)).
%F A175312 a(n) >= A007063(n); a(n) = max(K(n,1),K(n,2),...,K(n,n)), where K(i,j) is an element of Kimberling's Array given by A035486.
%F A175312 From _Enrique Pérez Herrero_, Mar 30 2010: (Start)
%F A175312 a(theta(k)) = A007063(theta(k)), where theta(k) = Sum_{i=0..k-1} 2^floor(i/3).
%F A175312 At these values the maximum in the Lower Shuffle is the diagonal expelled element. (End)
%t A175312 (* By direct computation *)
%t A175312 K[i_, j_] := i + j - 1 /; (j >= 2 i - 3);
%t A175312 K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3));
%t A175312 K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3));
%t A175312 K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable];
%t A175312 A175312[n_] := Max[Table[K[n, i], {i, 1, n}]]  (* _Enrique Pérez Herrero_, Mar 30 2010 *)
%t A175312 (* By the Formula *)
%t A175312 \[Lambda][n_] := Floor[Log[2, (n + 2)/3]];
%t A175312 A175312[n_] := 1 + 3*(n - \[Lambda][n]) - Floor[(n + 2)/(2^\[Lambda][n])] (* _Enrique Pérez Herrero_, Mar 30 2010 *)
%o A175312 (PARI) lambda(n)= floor(log((n + 2)/3)/log(2));
%o A175312 A175312(n)= 1 + 3*(n - lambda(n)) - floor((n + 2)/(2^lambda(n))); \\ _Enrique Pérez Herrero_, Mar 30 2010
%Y A175312 Cf. A006852, A007063, A035486, A035505.
%K A175312 nonn
%O A175312 1,2
%A A175312 _Enrique Pérez Herrero_, Mar 28 2010