cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175331 Array A092921(n,k) without the first two rows, read by antidiagonals.

This page as a plain text file.
%I A175331 #21 Jan 05 2025 04:45:54
%S A175331 1,1,1,1,2,1,1,3,2,1,1,5,4,2,1,1,8,7,4,2,1,1,13,13,8,4,2,1,1,21,24,15,
%T A175331 8,4,2,1,1,34,44,29,16,8,4,2,1,1,55,81,56,31,16,8,4,2,1,1,89,149,108,
%U A175331 61,32,16,8,4,2,1,1,144,274,208,120,63,32,16,8,4,2,1,1,233,504,401,236,125,64,32,16,8,4,2,1
%N A175331 Array A092921(n,k) without the first two rows, read by antidiagonals.
%C A175331 Antidiagonal sums are A048888. This is a transposed version of A048887, so the bivariate generating function is obtained by swapping the two arguments.
%C A175331 Brlek et al. (2006) call this table "number of psp-polyominoes with flat bottom". - _N. J. A. Sloane_, Oct 30 2018
%D A175331 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 125, 155.
%H A175331 Srecko Brlek, Andrea Frosini, Simone Rinaldi, and Laurent Vuillon, <a href="https://doi.org/10.37236/1041">Tilings by translation: enumeration by a rational language approach</a>, The Electronic Journal of Combinatorics, vol.13, (2006). Table 1 is essentially this array. - _N. J. A. Sloane_, Jul 20 2014
%F A175331 T(n,k) = A092921(n,k), n >= 2.
%F A175331 T(n,2) = A000045(n).
%F A175331 T(n,3) = A000073(n+2).
%F A175331 T(n,4) = A000078(n+2).
%e A175331 The array starts in row n=2 with columns k >= 1 as:
%e A175331   1   1   1   1   1   1   1   1   1   1
%e A175331   1   2   2   2   2   2   2   2   2   2
%e A175331   1   3   4   4   4   4   4   4   4   4
%e A175331   1   5   7   8   8   8   8   8   8   8
%e A175331   1   8  13  15  16  16  16  16  16  16
%e A175331   1  13  24  29  31  32  32  32  32  32
%e A175331   1  21  44  56  61  63  64  64  64  64
%e A175331   1  34  81 108 120 125 127 128 128 128
%e A175331   1  55 149 208 236 248 253 255 256 256
%p A175331 A092921 := proc(n,k) if k <= 0 or n <= 0 then 0; elif k = 1 or n = 1 then 1; else add( procname(n-i,k),i=1..k) ; end if; end proc:
%p A175331 A175331 := proc(n,k) A092921(n,k) ; end proc: # _R. J. Mathar_, Dec 17 2010
%t A175331 f[x_, n_] = (x - x^(m + 1))/(1 - 2*x + x^(m + 1))
%t A175331 a = Table[Table[SeriesCoefficient[
%t A175331       Series[f[x, m], {x, 0, 10}], n], {n, 0, 10}], {m, 1, 10}];
%t A175331 Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}];
%t A175331 Flatten[%]
%Y A175331 Cf. A000045, A048887, A048004, A126198.
%K A175331 nonn,tabl,easy
%O A175331 2,5
%A A175331 _Roger L. Bagula_, Dec 03 2010