cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175346 a(n) = Sum_{k=1..n^2} d(k), d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 8, 23, 50, 87, 140, 201, 280, 373, 482, 605, 746, 897, 1070, 1261, 1466, 1689, 1932, 2189, 2468, 2761, 3074, 3405, 3764, 4127, 4518, 4925, 5360, 5807, 6276, 6757, 7262, 7789, 8342, 8915, 9502, 10107
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 17 2010

Keywords

Comments

Generalized sequence: Sum_{k=1..T(n)} d(k). In this sequence T(n)=n^2, in A085831 T(n)=2^n, in A006218 T(n)=n. Other examples not in the OEIS: T(n)=p(n) n-th prime, T(n)=n*(n+1)/2 n-th triangular number, T(n)= F(n) n-th Fibonacci number, etc.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, k], {k, 1, n^2}], {n, 1, 80}] (* Carl Najafi, Aug 21 2011 *)
  • PARI
    a(n)=sum(k=1,n^2,numdiv(k)) \\ Charles R Greathouse IV, Aug 21 2011
    
  • Python
    def A175346(n): return (m:=n**2)+(sum(m//k for k in range(2,n+1))<<1) # Chai Wah Wu, Oct 24 2023

Formula

a(n) ~ 2n^2 log n. [Charles R Greathouse IV, Aug 21 2011]
a(n) = n^2 + 2*Sum_{k=2..n} floor(n^2/k). - Chai Wah Wu, Oct 24 2023

Extensions

More terms from Carl Najafi, Aug 21 2011