This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175362 #29 Aug 26 2021 19:15:54 %S A175362 1,4,4,0,0,0,0,0,4,8,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,8,0,0,0,0,0, %T A175362 0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,8,0,0, %U A175362 0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A175362 Number of integer pairs (x,y) satisfying |x|^3 + |y|^3 = n, -n <= x,y <= n. %C A175362 Cube variant of A004018. %C A175362 Obviously, a(n) must be 4*k, for k >= 0, n > 0. - _Altug Alkan_, Apr 09 2016 %C A175362 From _Robert Israel_, Jan 26 2017: (Start) %C A175362 a(k^3*n) >= a(n) for k >= 1. %C A175362 a(n) >= 16 for n in A001235. %C A175362 a(A011541(n)) >= 8*n. (End) %H A175362 Robert Israel, <a href="/A175362/b175362.txt">Table of n, a(n) for n = 0..10000</a> %F A175362 G.f.: ( 1 + 2 * Sum_{j>=1} x^(j^3) )^2. %F A175362 a(n^3) = 4 for n > 0. - _Altug Alkan_, Apr 09 2016 %F A175362 a(n) = 4*Sum_{k=1..floor(n^(1/3))} A010057(n - k^3), for n > 0. - _Daniel Suteu_, Aug 15 2021 %e A175362 a(2) = 4 counts (x,y) = (-1,1), (1,1), (-1,-1) and (1,-1). %e A175362 a(9) = 8 counts (x,y) = (-2,-1), (-2,1), (-1,-2), (-1,2), (1,-2), (1,2), (2,-1) and (2,1). %p A175362 N:= 200: # to get a(0)..a(N) %p A175362 G:= (1+2*add(x^(j^3),j=1..floor(N^(1/3))))^2: %p A175362 seq(coeff(G,x,j),j=0..N); # _Robert Israel_, Jan 26 2017 %o A175362 (PARI) a(n) = if(n==0, 1, 4*sum(k=1, sqrtnint(n, 3), ispower(n - k^3, 3))); \\ _Daniel Suteu_, Aug 16 2021 %Y A175362 Cf. A001235, A010057, A011541, A025446, A025455, A025464, A025468, A121980. %K A175362 nonn %O A175362 0,2 %A A175362 _R. J. Mathar_, Apr 24 2010 %E A175362 Invalid claim that belonged to A004018 removed by _R. J. Mathar_, Apr 24 2010