cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175365 Number of integer triples (x,y,z) satisfying |x|^3 + |y|^3 + |z|^3 = n, -n <= x,y,z <= n.

Original entry on oeis.org

1, 6, 12, 8, 0, 0, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 24, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A three-dimensional variant of A175362.

Examples

			a(2) = 12 counts (x,y,z) = (-1,-1,0), (-1,0,-1), (-1,0,1), (-1,1,0), (0,-1,-1), (0,-1,1), (0,1,-1), (0,1,1), (1,-1,0), (1,0,-1), (1,0,1) and (1,1,0).
		

Programs

  • Maple
    N:= 100: # to get a(0) to a(N)
    G:= (1+2*add(x^(j^3),j=1..floor(N^(1/3))))^3:
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Apr 08 2016
  • Mathematica
    CoefficientList[(1 + 2 Sum[x^(j^3), {j, 4}])^3, x] (* Michael De Vlieger, Apr 08 2016 *)
  • PARI
    a(n, k=3) = if(n==0, return(1)); if(k <= 0, return(0)); if(k == 1, return(ispower(n, 3))); my(count = 0); for(v = 0, sqrtnint(n, 3), count += (2 - (v == 0))*if(k > 2, a(n - v^3, k-1), if(ispower(n - v^3, 3), 2 - (n - v^3 == 0), 0))); count; \\ Daniel Suteu, Aug 15 2021

Formula

G.f.: ( 1 + 2*Sum_{j>=1} x^(j^3) )^3.
a(n) = A175362(n) + 2*Sum_{k=1..floor(n^(1/3))} A175362(n - k^3). - Daniel Suteu, Aug 15 2021