A175390 Number of irreducible binary polynomials Sum_{j=0..n} c(j)*x^j with c(1)=c(n-1)=1.
1, 1, 0, 1, 2, 2, 4, 9, 14, 24, 48, 86, 154, 294, 550, 1017, 1926, 3654, 6888, 13092, 24998, 47658, 91124, 174822, 335588, 645120, 1242822, 2396970, 4627850, 8947756, 17319148, 33553881, 65074406, 126324420, 245426486, 477215270, 928645186
Offset: 1
Keywords
Examples
The only irreducible binary polynomial of degree 2 is x^2+x+1 and it has the required property, so a(2)=1. The only polynomials of degree 3 with c(1)=c(2)=1 are x^3+x^2+x and x^3+x^2+x+1; neither is irreducible, so a(3)=0.
Links
- Alp Bassa, Ricardo Menares, Enumeration of a special class of irreducible polynomials in characteristic 2, arXiv:1905.08345 [math.NT], 2019.
- Harald Niederreiter, An enumeration formula for certain irreducible polynomials with an application to the construction of irreducible polynomials over the binary field, Applicable Algebra in Engineering, Communication and Computing, vol. 1, no. 2, pp. 119-124, (September-1990).
Programs
-
PARI
A(n) = { my( h, m, ret ); if ( n==1, return(1) ); h = valuation(n,2); /* largest power of 2 dividing n */ m = n/2^h; /* odd part of n */ if ( m == 1, /* power of two */ ret = (2^n+1)/(4*n) - 1/(2^(n+1)*n) * sum(j=0, n/2, (-1)^j*binomial(n,2*j)*7^j); , /* else */ ret = 1/(4*n)*sumdiv(m,d, moebius(m/d) *(2^(2^h*d) - 2^(1-2^h*d)*sum(j=0, floor(2^(h-1)*d), (-1)^(2^h*d+j) * binomial(2^h*d,2*j)*7^j) ) ); ); return( ret ); } vector(50,n,A(n))
Extensions
Edited by Franklin T. Adams-Watters, May 12 2010
Comments