cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175423 Sequence of numbers after 4th step of iteration defined in A175419.

This page as a plain text file.
%I A175423 #17 Feb 25 2024 10:21:54
%S A175423 0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,4,9,6,25,216,1,1,1,0,1,8,
%T A175423 1,1,25,36,1,8,1,0,1,6,1,1,1,1,1,1,1,0,1,8,1,1,1,1,1,1,1,0,1,1,1,1,1,
%U A175423 1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,8,1,1,1,1,1,1,1,1
%N A175423 Sequence of numbers after 4th step of iteration defined in A175419.
%e A175423 For n = 33: a(33) = 1 because for the number 33 there are 4 steps of defined iteration: {3^3 = 27}, {7^2 = 49}, {9^4 = 6561}, {((1^6)^5)^6 = 1} and the 4th step of iteration ends with 1. - _Jaroslav Krizek_, May 09 2010
%p A175423 A175420 := proc(n) option remember; local dgs,a,i ; if n = 0 then return 0 ; end if; dgs := convert(n,base,10) ; if op(1,dgs)= 0 then return 0 ; end if; for i from 1 to nops(dgs) do if op(-i,dgs) = 0 then dgs := [op(-i..nops(dgs),dgs)] ; dgs := subsop(1=1,dgs) ; break ; end if; end do: a := op(1,dgs) ; for i from 2 to nops(dgs) do a := a^ dgs[i] ; end do: a ; end proc:
%p A175423 A175421 := proc(n) A175420(A175420(n)) ; end proc:
%p A175423 A175422 := proc(n) A175420(A175421(n)) ; end proc:
%p A175423 A175423 := proc(n) A175420(A175422(n)) ; end proc:
%p A175423 seq(A175423(n),n=0..100) ; # _R. J. Mathar_, May 12 2010
%t A175423 Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; A175420[0]=0; A175420[n_]:=If[(len=IntegerLength[n])==1, n, Last[list=IntegerDigits[n]]^Product[Part[Drop[list, -1], i], {i, len-1}]]; a[n_]:=Nest[A175420[#]&, n, 4]; Array[a, 101, 0]
%Y A175423 Cf. A175419, A175420, A175421, A175422, A175424, A175425, A175426, A175427.
%K A175423 nonn,base
%O A175423 0,3
%A A175423 _Jaroslav Krizek_, May 09 2010
%E A175423 More terms from _R. J. Mathar_, May 12 2010
%E A175423 a(100) corrected by _Stefano Spezia_, Feb 25 2024